FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks

Type: Preprint

Publication Date: 2018-01-01

Citations: 31

DOI: https://doi.org/10.48550/arxiv.1809.04570

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ FLightNNs: Lightweight Quantized Deep Neural Networks for Fast and Accurate Inference 2019 Ruizhou Ding
Zeye Liu
Ting-Wu Chin
Diana Marculescu
Raúl Cortés D.
Blanton
+ Benchmarking Quantized Neural Networks on FPGAs with FINN 2021 Q. Ducasse
Pascal Cotret
Loïc Lagadec
Robert Stewart
+ PDF Chat LUTNet: Learning FPGA Configurations for Highly Efficient Neural Network Inference 2020 Erwei Wang
James J. Davis
Peter Y. K. Cheung
George A. Constantinides
+ Exploration of Low Numeric Precision Deep Learning Inference Using Intel FPGAs 2018 Philip Colangelo
Nasibeh Nasiri
Asit K. Mishra
Eriko Nurvitadhi
Martin Margala
Kevin Nealis
+ CodeX: Bit-Flexible Encoding for Streaming-based FPGA Acceleration of DNNs 2019 Mohammad Samragh
Mojan Javaheripi
Farinaz Koushanfar
+ Channel-wise Mixed-precision Assignment for DNN Inference on Constrained Edge Nodes 2022 Matteo Risso
Alessio Burrello
Luca Benini
Enrico Macii
Massimo Poncino
Daniele Jahier Pagliari
+ PDF Chat Channel-wise Mixed-precision Assignment for DNN Inference on Constrained Edge Nodes 2022 Matteo Risso
Alessio Burrello
Luca Benini
Enrico Macii
Massimo Poncino
Daniele Jahier Pagliari
+ PDF Chat Gradient-based Automatic Per-Weight Mixed Precision Quantization for Neural Networks On-Chip 2024 Chang Sun
Thea K. Årrestad
Vladimir Lončar
J. Ngadiuba
M. Spiropulu
+ SySMOL: A Hardware-software Co-design Framework for Ultra-Low and Fine-Grained Mixed-Precision Neural Networks 2023 Cyrus Zhou
Vaughn Richard
Pedro Savarese
Zachary Hassman
Michael Maire
Michael DiBrino
Yanjing Li
+ PDF Chat Memory-Efficient Dataflow Inference for Deep CNNs on FPGA 2020 Lucian Petrică
Tobías Alonso
Mairin Kroes
Nicholas J. Fraser
Sorin Coţofană
Michaela Blott
+ PDF Chat Optimizing DNN Inference on Multi-Accelerator SoCs at Training-time 2024 Matteo Risso
Alessio Burrello
Daniele Jahier Pagliari
+ Design Flow of Accelerating Hybrid Extremely Low Bit-width Neural Network in Embedded FPGA 2018 Junsong Wang
Qiuwen Lou
Xiaofan Zhang
Chao Zhu
Yonghua Lin
Deming Chen
+ PDF Chat Design Flow of Accelerating Hybrid Extremely Low Bit-Width Neural Network in Embedded FPGA 2018 Junsong Wang
Qiuwen Lou
Xiaofan Zhang
Chao Zhu
Yonghua Lin
Deming Chen
+ Memory-Efficient Dataflow Inference for Deep CNNs on FPGA 2020 Lucian Petrică
Tobías Alonso
Mairin Kroes
Nicholas C. Fraser
Sorin Coţofană
Michaela Blott
+ PDF Chat JAQ: Joint Efficient Architecture Design and Low-Bit Quantization with Hardware-Software Co-Exploration 2025 Mingzi Wang
Meng Yuan
Chen Tang
Weixiang Zhang
Yijian Qin
Yang Yao
Yingxin Li
Tao Feng
Xin Wang
Xun Guan
+ Resource-Efficient Neural Networks for Embedded Systems 2020 Wolfgang R. Roth
G. Schindler
Bernhard Klein
Robert Peharz
Sebastian Tschiatschek
Holger Fröning
Franz Pernkopf
Zoubin Ghahramani
+ PDF Chat LUT-DLA: Lookup Table as Efficient Extreme Low-Bit Deep Learning Accelerator 2025 Guoyu Li
Shengyu Ye
Chunyun Chen
Yang Wang
Fan Yang
Ting Cao
Cheng Liu
Mohamed M. Sabry
Mao Yang
+ DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures using Lookup Tables 2023 Darshan C. Ganji
Saad Ashfaq
Ehsan Saboori
Sudhakar Sah
Saptarshi Mitra
MohammadHossein AskariHemmat
Alexander F. Hoffman
Ahmed Hassanien
Mathieu Léonardon
+ DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures using Lookup Tables 2023 Darshan C. Ganji
Saad Ashfaq
Ehsan Saboori
Sudhakar Sah
Saptarshi Mitra
MohammadHossein AskariHemmat
Alexander F. Hoffman
Ahmed Hassanien
Mathieu Léonardon
+ PDF Chat SpaceEvo: Hardware-Friendly Search Space Design for Efficient INT8 Inference 2023 Xudong Wang
Li Lyna Zhang
Jiahang Xu
Quanlu Zhang
Yujing Wang
Yuqing Yang
Ningxin Zheng
Ting Cao
Mao Yang

Works That Cite This (15)

Action Title Year Authors
+ Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference 2023 Hongzheng Chen
Jiahao Zhang
Yixiao Du
Shaojie Xiang
Zichao Yue
Niansong Zhang
Yaohui Cai
Zhiru Zhang
+ PDF Chat Fast convolutional neural networks on FPGAs with hls4ml 2021 T. K. Aarrestad
Vladimir Lončar
Nicolò Ghielmetti
M. Pierini
S. Summers
J. Ngadiuba
Christoffer Petersson
Hampus Linander
Y. Iiyama
Giuseppe Di Guglielmo
+ PDF Chat Training Deep Neural Networks with Constrained Learning Parameters 2020 Prasanna Date
Christopher D. Carothers
John Mitchell
James Hendler
Malik Magdon‐Ismail
+ VEDLIoT 2023 K. Mika
René Griessl
Nils Kucza
Florian Porrmann
M. Shamim Kaiser
Lennart Tigges
Jens Hagemeyer
Pedro Trancoso
Muhammad Waqar Azhar
Fareed Qararyah
+ Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 2023 Stylianos I. Venieris
Javier Fernández-Marqués
Nicholas D. Lane
+ PDF Chat LUXOR 2020 S A Rasoulinezhad
Siddhartha
Hao Zhou
Lingli Wang
David Boland
Philip H. W. Leong
+ PDF Chat Efficient Error-Tolerant Quantized Neural Network Accelerators 2019 Giulio Gambardella
Johannes Kappauf
Michaela Blott
Christoph Doehring
Martin Kumm
Peter Zipf
Kees Vissers
+ PDF Chat Design optimization for high-performance computing using FPGA 2023 Murat Isik
Kayode Inadagbo
Hakan Aktaş
+ PDF Chat Binary neural networks: A survey 2020 Haotong Qin
Ruihao Gong
Xianglong Liu
Xiao Bai
Jingkuan Song
Nicu Sebe
+ PDF Chat Agile Autotuning of a Transprecision Tensor Accelerator Overlay for TVM Compiler Stack 2020 Dionysios Diamantopoulos
Burkhard Ringlein
Mitra Purandare
Gagandeep Singh
Christoph Hagleitner