A refined global well-posedness result for Schrodinger equations with derivative

Type: Preprint

Publication Date: 2001-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.math/0110026

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative 2002 J. Colliander
M. Keel
G. Staffilani
Hideo Takaoka
Terence Tao
+ Global well-posedness for Schrödinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terry Tao
+ PDF Chat Global Well-Posedness for Schrödinger Equations with Derivative 2001 J. Colliander
M. Keel
G. Staffilani
Hideo Takaoka
Terence Tao
+ GLOBAL WELL-POSEDNESS FOR SCHR ¨ ODINGER EQUATIONS WITH DERIVATIVE ∗ 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ Global well-posedness for the defocusing, quintic nonlinear Schrödinger equation in one dimension 2009 Benjamin Dodson
+ PDF Quadratic nonlinear derivative Schrödinger equations - Part 2 2008 Ioan Bejenaru
+ Global Well-posedness for the Defocusing, Quintic Nonlinear Schrödinger Equation in One Dimension for Low Regularity Data 2011 Benjamin Dodson
+ Sharp global well-posedness for 1D NLS with derivatives 2012 Qingtang Su
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^{2}(\R)$ 2024 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica Vişan
+ Global well-posedness and scattering for the defocusing quintic nonlinear Schrödinger equation in two dimensions 2018 Xueying Yu
+ Global Well-posedness for the Biharmonic Quintic Nonlinear Schrödinger Equation on $\mathbb{R}^2$ 2022 Engin Başakoğlu
T. Burak Gürel
Oğuz Yılmaz
+ Quadratic Nonlinear Derivative Schrödiger Equations - Part 1 2005 Ioan Bejenaru
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^2(\mathbb{R})$ 2022 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica Vişan
+ Global well-posedness and polynomial bounds for the defocusing $L^{2}$-critical nonlinear Schrödinger equation in $\R$ 2007 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ PDF Global well-posedness on the derivative nonlinear Schrödinger equation 2015 Yifei Wu
+ Global well-posedness and polynomial bounds for the defocusing $L^{2}$-critical nonlinear Schr\"odinger equation in $\R$ 2007 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Well-posedness for a nonlinear Schrödinger equation with quadratic derivative nonlinearities for bounded primitive initial data 2023 Kohei Akase
+ Quadratic Nonlinear Derivative Schrödinger Equations - Part 2 2006 Ioan Bejenaru
+ Global well-posedness for the derivative nonlinear Schr\"{o}dinger equation in $H^{\frac 12} (\mathbb{R})$ 2016 Zihua Guo
Yifei Wu
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R})$ 2016 Zihua Guo
Yifei Wu

Works That Cite This (0)

Action Title Year Authors