The weak-type $(1,1)$ of Fourier integral operators of order $-(n-1)/2$

Type: Preprint

Publication Date: 2002-01-01

Citations: 2

DOI: https://doi.org/10.48550/arxiv.math/0201220

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF The weak-type (1,1) of Fourier integral operators of order –(<i>n</i>–1)/2 2004 Terence Tao
+ PDF Chat The weak (1,1) boundedness of Fourier integral operators with complex phases 2024 Duván Cardona
Michael Ruzhansky
+ A local-to-global weak (1,1) type argument and applications to Fourier integral operators 2021 Duván Cardona
Michael Ruzhansky
+ PDF Chat $(L^{\infty},{\rm BMO})$ estimates and $(H^{1},L^{1})$ estimates for Fourier integral operators with symbol in $S^{m}_{0,\delta}$ 2024 Guangqing Wang
Suixin He
+ Weak-type (1,1) estimates for strongly singular operators 2018 Magali Folch-Gabayet
Ricardo A. Sáenz
+ Weak-type (1,1) estimates for strongly singular operators 2018 Magali Folch-Gabayet
Ricardo A. Sáenz
+ PDF Chat Characterizations of the Hardy space $\mathcal H_{\rm FIO}^{1}(\mathbb R^{n})$ for Fourier integral operators 2022 Zhijie Fan
Naijia Liu
Jan Rozendaal
Song Liang
+ PDF Chat A $$T(1)$$ -Theorem for non-integral operators 2013 Dorothee Frey
Peer Christian Kunstmann
+ PDF Chat Fourier integral operators on Hardy spaces with Hormander class 2024 Xiaofeng Ye
Chunjie Zhang
Zhu Xiang-rong
+ $$\alpha $$-Bernstein-Integral Type Operators 2023 Jyoti Yadav
S. A. Mohiuddine
Arun Kajla
Abdullah Alotaibi
+ A Hardy space for Fourier integral operators 1998 Hart F. Smith
+ PDF Chat Sharpness of Seeger-Sogge-Stein orders for the weak (1,1) boundedness of Fourier integral operators 2021 Duván Cardona
Michael Ruzhansky
+ Sharpness of Seeger-Sogge-Stein orders for the weak (1,1) boundedness of Fourier integral operators 2021 Duván Cardona
Michael Ruzhansky
+ Variable Weak Hardy Spaces $W\!H_L^{p(\cdot)}({\mathbb R}^n)$ Associated with Operators Satisfying Davies-Gaffney Estimates 2018 Ciqiang Zhuo
Dachun Yang
+ Riesz Transform Characterizations of Hardy Spaces Associated to Degenerate Elliptic Operators 2015 Dachun Yang
Junqiang Zhang
+ The weak (1,1) type of Fourier integral operators with complex phases 2021 Duván Cardona
Michael Ruzhansky
+ CalderĂłn-Zygmund Type Operators on Weight Weak Hardy Spaces over R~n 2001 Quek Tong
Yang Da
+ A T(1)-Theorem for non-integral operators 2011 Dorothee Frey
Peer Christian Kunstmann
+ A T(1)-Theorem for non-integral operators 2011 Dorothee Frey
Peer Christian Kunstmann
+ Hardy spaces for Fourier--Bessel expansions 2013 Jacek Dziubański
Marcin Preisner
Luz Roncal
Pablo RaĂşl Stinga