Type: Article
Publication Date: 2010-11-01
Citations: 5
DOI: https://doi.org/10.57262/die/1356019070
In this paper we study weak continuity of the dynamical systems for the KdV equation in $H^{-3/4}(\mathbb{R})$ and the modified KdV equation in $H^{1/4}(\mathbb{R})$. This topic should have significant applications in the study of other properties of these equations such as finite time blow-up and asymptotic stability and instability of solitary waves. The spaces considered here are borderline Sobolev spaces for the corresponding equations from the viewpoint of the local well-posedness theory. We first use a variant of the method of [5] to prove weak continuity for the mKdV, and next use a similar result for an mKdV system and the generalized Miura transform to get weak continuity for the KdV equation.