Inverse Littlewood-Offord theorems and the condition number of random discrete matrices

Type: Preprint

Publication Date: 2005-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.math/0511215

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Inverse Littlewood–Offord theorems and the condition number of random discrete matrices 2009 Terence Tao
Van H. Vu
+ On the counting problem in inverse Littlewood--Offord theory 2019 Asaf Ferber
Vishesh Jain
Kyle Luh
Wojciech Samotij
+ On the counting problem in inverse Littlewood--Offord theory 2019 Asaf Ferber
Vishesh Jain
Kyle Luh
Wojciech Samotij
+ Approximate Spielman-Teng theorems for random matrices with heavy-tailed entries: a combinatorial view 2019 Vishesh Jain
+ The Littlewood-Offord Problem and invertibility of random matrices 2007 Mark Rudelson
Roman Vershynin
+ The Littlewood-Offord Problem and invertibility of random matrices 2007 Mark Rudelson
Roman Vershynin
+ PDF Chat The Littlewood–Offord problem and invertibility of random matrices 2008 Mark Rudelson
Roman Vershynin
+ PDF Chat On the counting problem in inverse Littlewood–Offord theory 2020 Asaf Ferber
Vishesh Jain
Kyle Luh
Wojciech Samotij
+ On Littlewood-Offord theory for arbitrary distributions 2019 Tomas Juškevičius
Valentas Kurauskas
+ On Littlewood-Offord theory for arbitrary distributions 2019 Tomas Juškevičius
Valentas Kurauskas
+ On the Littlewood‐Offord problem for arbitrary distributions 2020 Tomas Juškevičius
Valentas Kurauskas
+ Smoothed analysis of the least singular value without inverse Littlewood-Offord theory. 2019 Vishesh Jain
+ Optimal inverse Littlewood–Offord theorems 2011 Hoi H. Nguyen
Van Vu
+ Optimal Inverse Littlewood-Offord theorems 2010 Hoi H. Nguyen
Van Vu
+ Optimal Inverse Littlewood-Offord theorems 2010 Hoi H. Nguyen
Van Vu
+ PDF Chat Arak’s inequalities for concentration functions and the Littlewood–Offord problem 2016 Friedrich Götze
Yu. S. Eliseeva
A. Yu. Zaîtsev
+ The strong circular law: a combinatorial view 2019 Vishesh Jain
+ The strong circular law: a combinatorial view 2019 Vishesh Jain
+ Approximate Spielman-Teng theorems for the least singular value of random combinatorial matrices 2019 Vishesh Jain
+ Approximate Spielman-Teng theorems for the least singular value of random combinatorial matrices. 2019 Vishesh Jain

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat Random symmetric matrices are almost surely nonsingular 2006 Kevin Costello
Terence Tao
Van Vu

Works Cited by This (0)

Action Title Year Authors