The Nitsche conjecture

Type: Preprint

Publication Date: 2009-08-10

Citations: 0

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ The Nitsche conjecture 2009 Tadeusz Iwaniec
Leonid V. Kovalev
Jani Onninen
+ The Nitsche conjecture 2010 Tadeusz Iwaniec
Leonid V. Kovalev
Jani Onninen
+ Harmonic Univalent Mappings and Minimal Graphs 2014 Zach Boyd
Michael Dorff
+ PDF Chat On the area of immersed minimal annuli in a slab 2024 Elham Matinpour
+ On the total curvature of minimal annuli in $R^3$ and Nitsche's conjecture 1997 Qing Chen
+ On the total curvature of minimal annuli in $R^3$ and Nitsche's conjecture 1997 Qing Chen
+ The catenoid estimate and its geometric applications 2016 Daniel Ketover
Fernando C. Marques
André Neves
+ PDF Chat On J. C. C. Nitsche type inequality for annuli on Riemann surfaces 2017 David Kalaj
+ On J. C. C. Nitsche type inequality for annuli on Riemann surfaces 2012 David Kalaj
+ On J. C. C. Nitsche type inequality for annuli on Riemann surfaces 2012 David Kalaj
+ The catenoid estimate and its geometric applications 2016 Daniel Ketover
Fernando C. Marques
André Neves
+ Constant Mean Curvature surfaces with prescribed finite topologies 2023 Stephen J. Kleene
+ PDF Chat The catenoid estimate and its geometric applications 2020 Daniel Ketover
Fernando C. Marques
André Neves
+ Single-cylinder square-tiled surfaces and the ubiquity of ratio-optimising pseudo-Anosovs 2019 Luke Jeffreys
+ Single-cylinder square-tiled surfaces and the ubiquity of ratio-optimising pseudo-Anosovs 2021 Luke Jeffreys
+ Single-cylinder square-tiled surfaces and the ubiquity of ratio-optimising pseudo-Anosovs 2019 Luke Jeffreys
+ PDF Chat Higher genus Riemann minimal surfaces 2007 Laurent Hauswirth
Frank Pacard
+ Minimal annuli with constant contact angle along the planar boundaries 2009 Juncheol Pyo
+ On the characterization of minimal surfaces with finite total curvature in $\mathbb H^2\times\mathbb R$ and $\widetilde{\rm PSL}_2(\mathbb{R},\tau)$ 2016 Laurent Hauswirth
Ana Menezes
M. Magdalena Rodríguez
+ On the characterization of minimal surfaces with finite total curvature in $\mathbb H^2\times\mathbb R$ and $\widetilde{\rm PSL}_2(\mathbb{R},τ)$ 2016 Laurent Hauswirth
Ana Menezes
M. Magdalena Rodríguez

Works That Cite This (0)

Action Title Year Authors