Uniform spectral properties of one-dimensional quasicrystals, IV. Quasi-Sturmian potentials

Type: Preprint

Publication Date: 2001-05-23

Citations: 2

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Uniform spectral properties of one-dimensional quasicrystals, IV. Quasi-Sturmian potentials 2001 David Damanik
Daniel Lenz
+ PDF Chat Uniform spectral properties of one-dimensional quasicrystals, iv. quasi-sturmian potentials 2003 David Damanik
Daniel Lenz
+ Zero measure Cantor spectra for continuum one-dimensional quasicrystals 2013 Daniel Lenz
Christian Seifert
Peter Stollmann
+ Zero measure Cantor spectra for continuum one-dimensional quasicrystals 2013 Daniel Lenz
Christian Seifert
Peter Stollmann
+ Zero measure Cantor spectra for continuum one-dimensional quasicrystals 2014 Daniel Lenz
Christian Seifert
Peter Stollmann
+ Log-dimensional spectral properties of one-dimensional quasicrystals 2002 David Damanik
Michael Landrigan
+ Log-dimensional spectral properties of one-dimensional quasicrystals 2002 David Damanik
Michael Landrigan
+ PDF Chat Log-dimensional spectral properties of one-dimensional quasicrystals 2002 David Damanik
Michael Landrigan
+ Schrödinger operators generated by substitutions 1995 Anton Bovier
Jean-Michel Ghez
+ Sets of non-Lyapunov behaviour for scalar and matrix Schrödinger cocycles 2022 Ilya Goldsheid
Sasha Sodin
+ Cantor spectrum for a class of $C^2$ quasiperiodic Schrödinger operators 2014 Yiqian Wang
Zhenghe Zhang
+ Almost sure purely singular continuous spectrum for quasicrystal models 2016 Christian Seifert
+ Spectral Properties of Limit-Periodic Schrödinger Operators 2009 David Damanik
Zheng Gan
+ PDF Chat Cantor Spectrum for a Class of $C^2$ Quasiperiodic Schrödinger Operators 2016 Yiqian Wang
Zhenghe Zhang
+ PDF Chat On gaps in the spectra of quasiperiodic Schr\"odinger operators with discontinuous monotone potentials 2024 Ilya Kachkovskiy
Leonid Parnovski
Roman Shterenberg
+ PDF Chat Sets of Non-Lyapunov Behaviour for Scalar and Matrix Schrödinger Cocycles 2023 Ilya Goldsheid
Sasha Sodin
+ Almost sure purely singular continuous spectrum for quasicrystal models 2016 Christian Seifert
+ Half-line eigenfunction estimates and stability of singular continuous spectrum 1999 David Damanik
Daniel Lenz
+ Zero Measure Spectrum for Multi-Frequency Schrödinger Operators 2020 Jon Chaika
David Damanik
Jake Fillman
Philipp Gohlke
+ Lyapunov Exponents and Spectral Analysis of Ergodic Schr\"odinger Operators: A Survey of Kotani Theory and its Applications 2006 David Damanik