A variant of the hypergraph removal lemma

Type: Preprint

Publication Date: 2005-01-01

Citations: 6

DOI: https://doi.org/10.48550/arxiv.math/0503572

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A variant of the hypergraph removal lemma 2006 Terence Tao
+ The Gaussian primes contain arbitrarily shaped constellations 2005 Terence Tao
+ Information theory, relative versions of the hypergraph regularity and removal lemmas, the Szemer\'edi-Furstenberg-Katznelson theorem, and prime constellations in number fields 2005 Terence Tao
+ A multidimensional Szemerédi's theorem in the primes 2016 Tatchai Titichetrakun
+ PDF The symmetry preserving removal lemma 2009 Balázs Szegedy
+ The Symmetry Preserving Removal Lemma 2008 Balázs Szegedy
+ A relative Szemerédi theorem 2013 David Conlon
Jacob Fox
Yufei Zhao
+ On very restricted arithmetic progressions in symmetric sets in finite field model 2018 Jan Hązła
+ A correspondence principle between (hyper)graph theory and probability theory, and the (hyper)graph removal lemma 2006 Terence Tao
+ Removal lemmas in sparse graphs 2015 Ander Lamaison Vidarte
+ The Removal Lemma: algebraic versions and applications 2012 Lluís Vena
+ A Simple Regularization of Hypergraphs 2006 Yoshiyasu Ishigami
+ Small subsets without $k$-term arithmetic progressions 2021 Rajko Nenadov
+ PDF None 2020 Noam Lifshitz
+ An improvement to the Kelley-Meka bounds on three-term arithmetic progressions 2023 Thomas F. Bloom
Olof Sisask
+ The number of subsets of integers with no $k$-term arithmetic progression 2016 József Balogh
Hong Liu
Maryam Sharifzadeh
+ The number of subsets of integers with no $k$-term arithmetic progression 2016 József Balogh
Hong Liu
Maryam Sharifzadeh
+ Szemerédi's regularity lemma revisited 2005 Terence Tao
+ Divisors of the Gaussian integers in an arithmetic progression 1989 P. D. Varbanec
Piotr Zarzycki
+ Selected Results in Additive Combinatorics: An Exposition. 2007 Emanuele Viola