The Universal Geometry of heterotic vacua

Type: Article

Publication Date: 2019-02-01

Citations: 11

DOI: https://doi.org/10.1007/jhep02(2019)038

Abstract

A bstract We consider a family of perturbative heterotic string backgrounds. These are complex threefolds X with c 1 = 0, each with a gauge field solving the Hermitian Yang-Mill’s equations and compatible B and H fields that satisfy the anomaly cancellation conditions. Our perspective is to consider a geometry in which these backgrounds are fibred over a parameter space. If the manifold X has coordinates x , and parameters are denoted by y , then it is natural to consider coordinate transformations $$ x\to \tilde{x}\left(x,y\right)\kern0.5em \mathrm{and}\kern0.5em y\to \tilde{y}(y) $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>x</mml:mi> <mml:mo>→</mml:mo> <mml:mover> <mml:mi>x</mml:mi> <mml:mo>˜</mml:mo> </mml:mover> <mml:mfenced> <mml:mi>x</mml:mi> <mml:mi>y</mml:mi> </mml:mfenced> <mml:mspace /> <mml:mi>and</mml:mi> <mml:mspace /> <mml:mi>y</mml:mi> <mml:mo>→</mml:mo> <mml:mover> <mml:mi>y</mml:mi> <mml:mo>˜</mml:mo> </mml:mover> <mml:mfenced> <mml:mi>y</mml:mi> </mml:mfenced> </mml:math> . Similarly, gauge transformations of the gauge field and B field also depend on both x and y . In the process of defining deformations of the background fields that are suitably covariant under these transformations, it turns out to be natural to extend the gauge field A to a gauge field $$ \mathbb{A} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>A</mml:mi> </mml:math> on the extended ( x , y )-space. Similarly, the B , H , and other fields are also extended. The total space of the fibration of the heterotic structures is the Universal Geometry of the title. The extension of gauge fields has been studied in relation to Donaldson theory and monopole moduli spaces. String vacua furnish a richer application of these ideas. One advantage of this point of view is that previously disparate results are unified into a simple tensor formulation. In a previous paper, by three of the present authors, the metric on the moduli space of heterotic theories was derived, correct through $$ \mathcal{O} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>O</mml:mi> </mml:math> ( α ′), and it was shown how this was related to a simple Kähler potential. With the present formalism, we are able to rederive the results of this previously long and involved calculation, in less than a page.

Locations

  • Journal of High Energy Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat The moduli of the universal geometry of heterotic moduli 2024 Jock McOrist
Martin Sticka
Eirik Eik Svanes
+ Heterotic Quantum Cohomology 2021 Jock McOrist
Eirik Eik Svanes
+ The Universal Constructions of Heterotic Vacua in Complex and Hermitian Moduli Superspaces 2022 Boris Stoyanov
+ PDF Chat Heterotic quantum cohomology 2022 Jock McOrist
Eirik Eik Svanes
+ PDF Chat A Metric for Heterotic Moduli 2017 Philip Candelas
Xenia de la Ossa
Jock McOrist
+ Standard models and Calabi–Yaus 2012 Ron Donagi
+ PDF Chat The Infinitesimal Moduli Space of Heterotic G 2 Systems 2017 Xenia de la Ossa
Magdalena Larfors
Eirik Eik Svanes
+ Classification of Quasi-Realistic Heterotic String Vacua 2019 Glyn Harries
+ PDF Chat Stabilizing all geometric moduli in heterotic Calabi-Yau vacua 2011 Lara B. Anderson
James Gray
André Lukas
Burt A. Ovrut
+ PDF Chat Generalised geometry and flux vacua 2016 Magdalena Larfors
+ PDF Chat The physical moduli of heterotic G_2 string compactifications 2024 Jock McOrist
Martin Sticka
Eirik Eik Svanes
+ Balanced Metrics and Phenomenological Aspects of Heterotic Compactifications 2010 Tamaz Brelidze
+ Les Houches Lectures on Constructing String Vacua 2008 Frederik Denef
+ PDF Chat Heterotic GUT and Standard Model vacua from simply connected Calabi–Yau manifolds 2006 Ralph Blumenhagen
Sebastian Moster
Timo Weigand
+ PDF Chat AN ALGORITHMIC APPROACH TO STRING PHENOMENOLOGY 2010 Yang‐Hui He
+ PDF Chat Type IIA and heterotic string vacua in 2001 Michael Haack
Jan Louis
Monika Marquart
+ PDF Chat Non-geometric vacua of the Spin(32)/ℤ2 heterotic string and little string theories 2017 Anamarı́a Font
Christoph Mayrhofer
+ PDF Chat Bundles over nearly-Kahler homogeneous spaces in heterotic string theory 2011 Michael Klaput
André Lukas
Cyril Matti
+ PDF Chat Heterotic model building: 16 special manifolds 2014 Yang‐Hui He
Seung-Joo Lee
André Lukas
Chuang Sun
+ PDF Chat A Heterotic Hermitian--Yang--Mills Equivalence 2024 Jock McOrist
Sébastien D. Le Picard
Eirik Eik Svanes