Type: Article
Publication Date: 2008-09-22
Citations: 127
DOI: https://doi.org/10.1088/0266-5611/24/5/055020
We consider the stable approximation of sparse solutions to nonlinear operator equations by means of Tikhonov regularization with a subquadratic penalty term. Imposing certain assumptions, which for a linear operator are equivalent to the standard range condition, we derive the usual convergence rate of the regularized solutions in dependence of the noise level δ. Particular emphasis lies on the case, where the true solution is known to have a sparse representation in a given basis. In this case, if the differential of the operator satisfies a certain injectivity condition, we can show that the actual convergence rate improves up to O(δ).