A-priori bounds for the 1-d cubic NLS in negative Sobolev spaces

Type: Preprint

Publication Date: 2006-01-01

Citations: 2

DOI: https://doi.org/10.48550/arxiv.math/0612717

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Energy and local energy bounds for the 1-D cubic NLS equation in H^{-1/4} 2010 Herbert Koch
Daniel Tataru
+ Energy and local energy bounds for the 1-D cubic NLS equation in H^{-1/4} 2010 Herbert Koch
Daniel Tataru
+ PDF Chat Energy and local energy bounds for the 1-d cubic NLS equation in \( H^{- \frac{1}{4}} \) 2012 Herbert Koch
Daniel Tataru
+ PDF Chat Bounds for KdV and the 1-d cubic NLS equation in rough function spaces 2014 Herbert Koch
+ PDF Chat Bounds on the growth of high discrete Sobolev norms for the cubic discrete nonlinear Schrödinger equations on <inline-formula><tex-math id="M1">\begin{document}$ h\mathbb{Z} $\end{document}</tex-math></inline-formula> 2019 Joackim Bernier
+ Scattering for H^1/2 bounded solutions to the cubic, defocusing NLS in 3 dimensions 2007 Carlos E. Kenig
Frank Merle
+ PDF Chat On the growth of Sobolev norm for the cubic NLS on two dimensional product space 2024 Hideo Takaoka
+ Scattering for 𝐻̇^{1/2} bounded solutions to the cubic, defocusing NLS in 3 dimensions 2009 Carlos E. Kenig
Frank Merle
+ Sharp well-posedness for the cubic NLS and mKdV in $H^s(\mathbb R)$ 2020 Benjamin Harrop‐Griffiths
Rowan Killip
Monica Vişan
+ On the growth of Sobolev norm for the cubic NLS on two dimensional product space 2023 Hideo Takaoka
+ PDF Chat The focusing cubic NLS with inverse-square potential in three space dimensions 2017 Rowan Killip
Jason Murphy
Monica Vişan
Jiqiang Zheng
+ Bounds on the growth of high discrete Sobolev norms for the cubic discrete nonlinear Schr{\"o}dinger equations on $h\mathbb{Z}$ 2018 Joackim Bernier
+ Global well-posedness for the defocusing, cubic nonlinear Schr{ö}dinger equation with initial data in a critical space 2020 Benjamin Dodson
+ Global well-posedness for the defocusing, cubic nonlinear Schr{\"o}dinger equation with initial data in a critical space 2020 Benjamin Dodson
+ Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on $\R^2$ 2007 J. Colliander
Manoussos G. Grillakis
Nikolaos Tzirakis
+ PDF Chat Improved Interaction Morawetz Inequalities for the Cubic Nonlinear Schrödinger Equation on ℝ2 2007 J. Colliander
Manoussos G. Grillakis
Nikolaos Tzirakis
+ Large data global well-posedness and scattering for the focusing cubic nonlinear Schrödinger equation on $\mathbb{R}^2\times\mathbb{T}$ 2022 Luo Yongming
+ Global well-posedness and polynomial bounds for the defocusing $L^{2}$-critical nonlinear Schr\"odinger equation in $\R$ 2007 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ PDF Chat Scattering for defocusing cubic NLS under locally damped strong trapping 2025 David Lafontaine
Boris Shakarov
+ PDF Chat Growing Sobolev norms for the cubic defocusing Schrödinger equation 2014 Zaher Hani
Benoît Pausader
Nikolay Tzvetkov
Nicola Visciglia