Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Sign In
Light
Dark
System
On the Number of Solutions of Exponential Congruences
Antal Balog
,
Kevin Broughan
,
Igor E. Shparlinski
Type:
Preprint
Publication Date:
2010-03-09
Citations:
1
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
PDF
Chat
On the number of solutions of exponential congruences
2011
Antal Balog
Kevin Broughan
Igor E. Shparlinski
+
On the Number of Solutions of Exponential Congruences
2010
Antal Balog
Kevin Broughan
Igor E. Shparlinski
+
On multiplicative congruences
2008
M. Z. Garaev
+
PDF
Chat
Small solutions of generic ternary quadratic congruences to general moduli
2024
Stephan Baier
Aishik Chattopadhyay
+
Congruences for Ap\'ery-like numbers
2018
Zhi-Hong Sun
+
PDF
Chat
Congruences and Rational Exponential Sums with the Euler Function
2006
William D. Banks
Igor E. Shparlinski
+
Small solutions of congruences with prime modulus
1986
Wolfgang M. Schmidt
+
Computing solutions to the congruence <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml18" display="inline" overflow="scroll" altimg="si18.gif"><mml:msup><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mo>⋯</mml:mo><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mi>n</…
2018
Max A. Alekseyev
J. M. Grau
Antonio M. Oller‐Marcén
+
On Certain Modular Equations
2004
Marius Constantin Ionescu
+
PDF
Chat
The congruence $x^{x}\equiv \lambda \pmod p$
2015
Javier Cilleruelo
M. Z. Garaev
+
PDF
Chat
Small Solutions of generic ternary quadratic congruences
2024
Stephan Baier
Aishik Chattopadhyay
+
The congruence $x^n\equiv -a^n\pmod{m}$: Solvability and related OEIS sequences
2024
Jorma K. Merikoski
Pentti Haukkanen
Timo Tossavainen
+
PDF
Chat
On the largest prime factor of n!+ 2^n-1
2005
Florian Luca
Igor E. Shparlinski
+
On the number of solutions of congruences and equations in $GF[q,x]$
1971
Leslie E. Shader
+
PDF
Chat
Small solutions of congruences over algebraic number fields
1987
Todd Cochrane
+
On the distribution of modular square roots of primes
2020
Ilya D. Shkredov
Igor E. Shparlinski
Alexandru Zaharescu
+
PDF
Chat
On the congruence $$1^m + 2^m + \cdots + m^m\equiv n \pmod {m}$$ 1 m + 2 m + ⋯ + m m ≡ n ( mod m ) with $$n\mid m$$ n ∣ m
2014
J. M. Grau
Antonio M. Oller‐Marcén
Jonathan Sondow
+
On the number of ABC solutions with restricted radical sizes
2014
Daniel M. Kane
+
Solutions to polynomial congruenceswith variables restricted to a box
2024
Todd Cochrane
Konstantinos Kydoniatis
Craig Spencer
+
A Formula for the Number of solutions of the Congruence αx~a+βy~b+γz~c≡0(modp~n)
1995
韩清
Works That Cite This (1)
Action
Title
Year
Authors
+
PDF
Chat
Counting Fixed Points and Rooted Closed Walks of the Singular Map $$x \mapsto {x^{{x^n}}}$$ Modulo Powers of a Prime
2020
Joshua Holden
Pamela A. Richardson
Margaret M. Robinson
Works Cited by This (3)
Action
Title
Year
Authors
+
PDF
Chat
Some heuristics and results for small cycles of the discrete logarithm
2005
Joshua Holden
Pieter Moree
+
PDF
Chat
Distribution of consecutive modular roots of an integer
2008
Jean Bourgain
Igor E. Shparlinski
+
An Introduction to the Theory of Numbers. By G. H. Hardy and E. M. Wright. 2nd edition. Pp. xvi, 407 25s. 1945. (Oxford)
1946
T. A. A. B.