Convex Polygons in Cartesian Products

Type: Preprint

Publication Date: 2018-12-26

Citations: 0

Abstract

We study several problems concerning convex polygons whose vertices lie in a Cartesian product (for short, grid) of two sets of n real numbers. First, we prove that every such grid contains a convex polygon with $\Omega$(log n) vertices and that this bound is tight up to a constant factor. We generalize this result to d dimensions (for a fixed d $\in$ N), and obtain a tight lower bound of $\Omega$(log d--1 n) for the maximum number of points in convex position in a d-dimensional grid. Second, we present polynomial-time algorithms for computing the largest convex chain in a grid that contains no two points of the same x-or y-coordinate. We show how to efficiently approximate the maximum size of a supported convex polygon up to a factor of 2. Finally, we present exponential bounds on the maximum number of convex polygons in these grids, and for some restricted variants. These bounds are tight up to polynomial factors.

Locations

  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ Convex polygons in Cartesian products 2019 Jean Lou De Carufel
Adrian Dumitrescu
Wouter Meulemans
Tim Ophelders
Claire Pennarun
Csaba D. T贸th
Sander Verdonschot
+ Convex Polygons in Cartesian Products 2018 Jean-Lou De Carufel
Adrian Dumitrescu
Wouter Meulemans
Tim Ophelders
Claire Pennarun
Csaba D. T贸th
Sander Verdonschot
+ PDF Chat Convex Polygons in Cartesian Products 2018 Jean-Lou De Carufel
Adrian Dumitrescu
Wouter Meulemans
Tim Ophelders
Claire Pennarun
Csaba D. T贸th
Sander Verdonschot
+ PDF Chat Convex Polygons in Cartesian Products 2018 Jean-Lou De Carufel
Adrian Dumitrescu
Wouter Meulemans
Tim Ophelders
Claire Pennarun
Csaba D. T贸th
Sander Verdonschot
+ Convex transversals 2012 Esther M. Arkin
Claudia Dieckmann
Christian Knauer
Joseph S. B. Mitchell
Valentin Polishchuk
Lena Schlipf
Shang Yang
+ PDF Chat Convex Polygons in Geometric Triangulations 2017 Adrian Dumitrescu
Csaba D. T贸th
+ Maximal Parallelograms in Convex Polygons - A Novel Geometric Structure 2015 Kai Jin
+ PDF Chat Fractional Helly Theorem for Cartesian Products of Convex Sets 2022 Debsoumya Chakraborti
Jaehoon Kim
Jinha Kim
Minki Kim
Hong Liu
+ Economical Convex Coverings and Applications 2023 Sunil K. Arya
Guilherme D. da Fonseca
David M. Mount
+ Convex polytopes in restricted point sets in R^d 2025 Boris Bukh
Dong Zichao
+ Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes 2009 Menelaos I. Karavelas
Eleni Tzanaki
+ Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes 2009 Menelaos I. Karavelas
Eleni Tzanaki
+ Counting large distances in convex polygons 2011 Filip Mori膰
David Pritchard
+ PDF Chat Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes 2011 Menelaos I. Karavelas
Eleni Tzanaki
+ Fractional Helly theorem for Cartesian products of convex sets 2021 Debsoumya Chakraborti
Jaehoon Kim
Jinha Kim
Minki Kim
Hong Liu
+ Computing D-convex hulls in the plane 2008 Vojt臎ch Fran臎k
Ji艡谋虂 Matou拧ek
+ Problems in Convex Geometry 2013 E. Rold谩n Pensado
+ Convex Hulls and Voronoi Diagrams 2000 Bernard Chazelle
+ Inscribing an axially symmetric polygon and other approximation algorithms for planar convex sets 2005 Hee-Kap Ahn
Peter Bra脽
Otfried Cheong
Hyeon-Suk Na
Chan-Su Shin
Antoine Vigneron
+ Geometry of Rounding 2022 Jason Vander Woude
Peter Dixon
A. Pavan
Jamie Radcliffe
N. V. Vinodchandran

Works That Cite This (0)

Action Title Year Authors