RadioGAN – Translations between different radio surveys with generative adversarial networks

Type: Article

Publication Date: 2019-06-04

Citations: 10

DOI: https://doi.org/10.1093/mnras/stz1534

Abstract

Radio surveys are widely used to study active galactic nuclei. Radio interferometric observations typically trade-off surface brightness sensitivity for angular resolution. Hence, observations using a wide range of baseline lengths are required to recover both bright small-scale structures and diffuse extended emission. We investigate if generative adversarial networks (GANs) can extract additional information from radio data and might ultimately recover extended flux from a survey with a high angular resolution and vice versa. We use a GAN for the image-to-image translation between two different data sets, namely the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) and the NRAO VLA Sky Survey (NVSS) radio surveys. The GAN is trained to generate the corresponding image cut-out from the other survey for a given input. The results are analysed with a variety of metrics, including structural similarity as well as flux and size comparison of the extracted sources. RadioGAN is able to recover extended flux density within a 20 per cent margin for almost half of the sources and learns more complex relations between sources in the two surveys than simply convolving them with a different synthesized beam. RadioGAN is also able to achieve subbeam resolution by recognizing complicated underlying structures from unresolved sources. RadioGAN generates over a third of the sources within a 20 |${{\ \rm per\ cent}}$| deviation from both original size and flux for the FIRST to NVSS translation, while for the NVSS to FIRST mapping it achieves almost |$30{{\ \rm per\ cent}}$| within this range.

Locations

  • Monthly Notices of the Royal Astronomical Society - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Repository for Publications and Research Data (ETH Zurich) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Deep learning-based radiointerferometric imaging with GAN-aided training 2023 Felix Geyer
K. Schmidt
Janis Kummer
M. Brüggen
H. W. Edler
Dominik Elsässer
Florian Griese
A. Poggenpohl
L. Rustige
W. Rhode
+ PDF Chat Deep-learning-based radiointerferometric imaging with GAN-aided training 2023 Felix Geyer
K. Schmidt
Janis Kummer
M. Brüggen
H. W. Edler
Dominik Elsässer
Florian Griese
A. Poggenpohl
L. Rustige
W. Rhode
+ PDF Chat Morphological classification of radio galaxies with Wasserstein generative adversarial network-supported augmentation 2023 L. Rustige
Janis Kummer
Florian Griese
K. Borras
M. Brüggen
Patrick Connor
Frank Gaede
Gregor Kasieczka
Tobias Knopp
Peter Schleper
+ PDF Chat Generative deep fields: arbitrarily sized, random synthetic astronomical images through deep learning 2019 Michael J. Smith
J. E. Geach
+ Morphological Classification of Radio Galaxies with wGAN-supported Augmentation 2022 L. Rustige
Janis Kummer
Florian Griese
K. Borras
M. Brüggen
Patrick Connor
Frank Gaede
Gregor Kasieczka
Tobias Knopp
P. Schleper
+ PDF Chat psfgan: a generative adversarial network system for separating quasar point sources and host galaxy light 2018 Dominic Stark
Barthelemy Launet
Kevin Schawinski
Ce Zhang
Michael Koss
M Dennis Turp
Lia F. Sartori
Hantian Zhang
Yiru Chen
Anna K. Weigel
+ Radio Galaxy Classification with wGAN-Supported Augmentation 2022 Janis Kummer
L. Rustige
Florian Griese
K. Borras
M. Brüggen
Patrick Connor
Frank Gaede
Gregor Kasieczka
P. Schleper
+ Galaxy Image Translation with Semi-supervised Noise-reconstructed Generative Adversarial Networks 2021 Q. Lin
D. Fouchez
Jérôme Pasquet
+ PDF Chat Galaxy Image Translation with Semi-supervised Noise-reconstructed Generative Adversarial Networks 2021 Q. Lin
D. Fouchez
Jérôme Pasquet
+ PDF Chat Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit 2017 Kevin Schawinski
Ce Zhang
Hantian Zhang
Lucas Fowler
Gokula Krishnan Santhanam
+ PDF Chat Forging new worlds: high-resolution synthetic galaxies with chained generative adversarial networks 2019 Levi Fussell
Ben Moews
+ PDF Chat Survey2Survey: a deep learning generative model approach for cross-survey image mapping 2021 Brandon Buncher
Awshesh Nath Sharma
M. Carrasco Kind
+ Multi-fidelity Emulator for Cosmological Large Scale 21 cm Lightcone Images: a Few-shot Transfer Learning Approach with GAN 2023 Kangning Diao
Yi Mao
+ SeeingGAN: Galactic image deblurring with deep learning for better morphological classification of galaxies 2021 Fang Kai Gan
Kenji Bekki
Abdolhosein Hashemizadeh
+ PDF Chat Deblending Galaxies with Generative Adversarial Networks 2022 Shoubaneh Hemmati
Eric Huff
Hooshang Nayyeri
A. Ferté
P. Melchior
Bahram Mobasher
Jason Rhodes
Abtin Shahidi
Harry I. Teplitz
+ Generative Adversarial Networks for Astronomical Images Generation 2021 Davide Alessandro Coccomini
Nicola Messina
Claudio Gennaro
Fabrizio Falchi
+ PDF Chat Generative Adversarial Networks for Astronomical Images Generation 2021 Davide Alessandro Coccomini
Nicola Messina
Claudio Gennaro
Fabrizio Falchi
+ Generative Adversarial Networks for Astronomical Images Generation 2021 Davide Alessandro Coccomini
Nicola Messina
Claudio Gennaro
Fabrizio Falchi
+ Simulating images of radio galaxies with diffusion models 2024 T. Vičánek Martínez
Nicolás Barón Pérez
M. Brüggen
+ PDF Chat Mapping Galaxy Images Across Ultraviolet, Visible and Infrared Bands Using Generative Deep Learning 2025 Youssef Zaazou
Alex Bihlo
Terrence S. Tricco

Works Cited by This (18)

Action Title Year Authors
+ PDF Chat Table for Estimating the Goodness of Fit of Empirical Distributions 1948 N. Smirnov
+ PDF Chat The five-hundred-meter aperture spherical radio telescope (FAST) project 2013 Rendong Nan
Di Li
+ PDF Chat wsclean: an implementation of a fast, generic wide-field imager for radio astronomy 2014 A. R. Offringa
B. McKinley
N. Hurley‐Walker
F. H. Briggs
R. B. Wayth
D. L. Kaplan
M. E. Bell
L. Feng
Abraham R. Neben
J. D. Hughes
+ PDF Chat Multiscale CLEAN Deconvolution of Radio Synthesis Images 2008 T. J. Cornwell
+ PDF Chat Robust sparse image reconstruction of radio interferometric observations with purify 2017 Luke Pratley
Jason D. McEwen
Mayeul d’Avezac
Rafael E. Carrillo
Alexandru Onose
Yves Wiaux
+ PDF Chat Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit 2017 Kevin Schawinski
Ce Zhang
Hantian Zhang
Lucas Fowler
Gokula Krishnan Santhanam
+ Creating Virtual Universes Using Generative Adversarial Networks. 2017 Mustafa Mustafa
Deborah Bard
W. Bhimji
Rami Al‐Rfou
Zarija Lukić
+ Pulsar Candidate Identification with Artificial Intelligence Techniques 2017 Ping Guo
Fuqing Duan
Pei Wang
Yao Yao
Yin Qian
Xin Xin
+ Controlling Physical Attributes in GAN-Accelerated Simulation of Electromagnetic Calorimeters 2018 Luke de Oliveira
M. Paganini
Benjamin Nachman
+ PDF Chat Radio Galaxy Zoo: compact and extended radio source classification with deep learning 2018 Vesna Lukic
M. Brüggen
Julie Banfield
O. I. Wong
L. Rudnick
R. P. Norris
Brooke Simmons