DeepMDP: Learning Continuous Latent Space Models for Representation Learning

Type: Preprint

Publication Date: 2019-06-06

Citations: 47

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ DeepMDP: Learning Continuous Latent Space Models for Representation Learning 2019 Carles Gelada
Saurabh Kumar
Jacob Buckman
Ofir Nachum
Marc G. Bellemare
+ Harnessing Discrete Representations For Continual Reinforcement Learning 2023 Edan Meyer
Adam White
Marlos C. Machado
+ PDF Chat Constrained Latent Action Policies for Model-Based Offline Reinforcement Learning 2024 Marvin Alles
Philip Becker-Ehmck
Patrick van der Smagt
Maximilian Karl
+ Learning Temporally-Consistent Representations for Data-Efficient Reinforcement Learning 2021 Trevor McInroe
Lukas Schäfer
Stefano V. Albrecht
+ Low-Dimensional State and Action Representation Learning with MDP Homomorphism Metrics 2021 Nicolò Botteghi
Mannes Poel
Beril Sırmaçek
Christoph Brüne
+ Learning World Models with Identifiable Factorization 2023 Yu-Ren Liu
Biwei Huang
Zhengmao Zhu
Honglong Tian
Mingming Gong
Yang Yu
Kun Zhang
+ Bootstrap Latent-Predictive Representations for Multitask Reinforcement Learning 2020 Daniel Guo
Bernardo Ávila Pires
Bilal Piot
Jean-Bastien Grill
Florent Altché
Rémi Munos
Mohammad Gheshlaghi Azar
+ Understanding and Addressing the Pitfalls of Bisimulation-based Representations in Offline Reinforcement Learning 2023 Hongyu Zang
Xin Li
Leiji Zhang
Liu Yang
Baigui Sun
Riashat Islam
Rémi Tachet des Combes
Romain Laroche
+ Efficient Reinforcement Learning in Block MDPs: A Model-free Representation Learning Approach 2022 Xuezhou Zhang
Yuda Song
Masatoshi Uehara
Mengdi Wang
Alekh Agarwal
Wen Sun
+ PDF Chat Rich-Observation Reinforcement Learning with Continuous Latent Dynamics 2024 Yuda Song
Lili Wu
Dylan J. Foster
Akshay Krishnamurthy
+ Representation Learning in Deep RL via Discrete Information Bottleneck 2022 Riashat Islam
Hongyu Zang
Manan Tomar
Aniket Didolkar
Md Mofijul Islam
Samin Yeasar Arnob
Iqbal Tariq
Xin Li
Anirudh Goyal
Nicolas Heess
+ Learning Invariant Representations for Reinforcement Learning without Reconstruction 2020 Amy Zhang
Rowan McAllister
Roberto Calandra
Yarin Gal
Sergey Levine
+ Learning Invariant Representations for Reinforcement Learning without Reconstruction 2020 Amy Zhang
Rowan McAllister
Roberto Calandra
Yarin Gal
Sergey Levine
+ PDF Chat Representation Learning For Efficient Deep Multi-Agent Reinforcement Learning 2024 Dom Huh
Prasant Mohapatra
+ Learning Markov State Abstractions for Deep Reinforcement Learning 2021 Cameron Allen
Neev Parikh
Omer Gottesman
George Konidaris
+ Deep Model-Based Reinforcement Learning for High-Dimensional Problems, a Survey 2020 Aske Plaat
Walter A. Kosters
Mike Preuß
+ Deep Model-Based Reinforcement Learning for High-Dimensional Problems, a Survey 2020 Aske Plaat
Walter A. Kosters
Mike Preuß
+ Latent Variable Representation for Reinforcement Learning 2022 Tongzheng Ren
Chenjun Xiao
Tianjun Zhang
Na Li
Zhaoran Wang
Sujay Sanghavi
Dale Schuurmans
Bo Dai
+ Learning Latent State Spaces for Planning through Reward Prediction 2019 Aaron Havens
Yi Ouyang
Prabhat Nagarajan
Yasuhiro Fujita
+ Model-Based Deep Reinforcement Learning for High-Dimensional Problems, a Survey. 2020 Aske Plaat
Walter A. Kosters
Mike Preuß

Works That Cite This (39)

Action Title Year Authors
+ PDF Chat Mastering Atari, Go, chess and shogi by planning with a learned model 2020 Julian Schrittwieser
Ioannis Antonoglou
Thomas Hubert
Karen Simonyan
Laurent Sifre
Simon Schmitt
Arthur Guez
Edward Lockhart
Demis Hassabis
Thore Graepel
+ Learning Robust State Abstractions for Hidden-Parameter Block MDPs 2020 Amy Zhang
Shagun Sodhani
Khimya Khetarpal
Joëlle Pineau
+ Return-Based Contrastive Representation Learning for Reinforcement Learning 2021 Guoqing Liu
Chuheng Zhang
Li Zhao
Tao Qin
Jinhua Zhu
Li Jian
Nenghai Yu
Tie‐Yan Liu
+ Contrastive Learning of Structured World Models 2019 Thomas Kipf
Elise van der Pol
Max Welling
+ Which Mutual-Information Representation Learning Objectives are Sufficient for Control? 2021 Kate Rakelly
Abhishek Gupta
Carlos Florensa
Sergey Levine
+ Multi-Task Reinforcement Learning as a Hidden-Parameter Block MDP 2020 Amy Zhang
Shagun Sodhani
Khimya Khetarpal
Joëlle Pineau
+ Learning Representations for Pixel-based Control: What Matters and Why? 2021 Manan Tomar
Utkarsh Mishra
Amy Zhang
Matthew E. Taylor
+ Deep Reinforcement Learning and Its Neuroscientific Implications 2020 Matthew Botvinick
Jane X. Wang
Will Dabney
Kevin J Miller
Zeb Kurth‐Nelson
+ A Geometric Perspective on Optimal Representations for Reinforcement Learning 2019 Marc G. Bellemare
Will Dabney
Robert Dadashi
Adrien Ali Taïga
Pablo Samuel Castro
Nicolas Le Roux
Dale Schuurmans
Tor Lattimore
Clare Lyle
+ Towards Robust Bisimulation Metric Learning 2021 Mete Kemertas
Tristan Aumentado-Armstrong

Works Cited by This (33)

Action Title Year Authors
+ Equivalence of distance-based and RKHS-based statistics in hypothesis testing 2013 Dino Sejdinović
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
+ Convex Analysis and Nonlinear Optimization 2006 Jonathan M. Borwein
Adrian S. Lewis
+ A kernel two-sample test 2012 Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
+ Integral Probability Metrics and Their Generating Classes of Functions 1997 Alfred Müller
+ The Cramer Distance as a Solution to Biased Wasserstein Gradients 2017 Marc G. Bellemare
Ivo Danihelka
Will Dabney
Shakir Mohamed
Balaji Lakshminarayanan
Stephan Hoyer
Rémi Munos
+ Visual Interaction Networks 2017 Nicholas Watters
Andrea Tacchetti
Théophane Weber
Razvan Pascanu
Peter Battaglia
Daniel Zoran
+ Probabilistic Recurrent State-Space Models 2018 Andreas Doerr
Christian Daniel
Martin Schiegg
Duy Nguyen-Tuong
Stefan Schaal
Marc Toussaint
Sebastian Trimpe
+ Learning and Querying Fast Generative Models for Reinforcement Learning 2018 Lars Buesing
Théophane Weber
Sébastien Racanière
S. M. Ali Eslami
Danilo Jimenez Rezende
David Reichert
Fabio Viola
Frederic Besse
Karol Gregor
Demis Hassabis
+ Model-Based Value Estimation for Efficient Model-Free Reinforcement Learning 2018 Vladimir Feinberg
Alvin Wan
Ion Stoica
Michael I. Jordan
Joseph E. Gonzalez
Sergey Levine
+ Regularisation of Neural Networks by Enforcing Lipschitz Continuity 2018 Henry Gouk
Eibe Frank
Bernhard Pfahringer
Michael J. Cree