Prophet Inequalities for I.I.D. Random Variables from an Unknown Distribution

Type: Article
Publication Date: 2019-06-17
Citations: 49
DOI: https://doi.org/10.1145/3328526.3329627

Abstract

A central object in optimal stopping theory is the single-choice prophet inequality for independent, identically distributed random variables: given a sequence of random variables X1, ..., Xn drawn independently from a distribution F, the goal is to choose a stopping time τ so as to maximize α such that for all distributions F we have E[Xτ]≥α•E[maxt Xt]. What makes this problem challenging is that the decision whether τ=t may only depend on the values of the random variables X1, ..., Xt and on the distribution F. For a long time the best known bound for the problem had been α≥1-1/e≅0.632, but quite recently a tight bound of α≅0.745 was obtained. The case where F is unknown, such that the decision whether τ=t may depend only on the values of the random variables X1, ..., Xt, is equally well motivated but has received much less attention. A straightforward guarantee for this case of α≥1-1/e≅0.368 can be derived from the solution to the secretary problem, where an arbitrary set of values arrive in random order and the goal is to maximize the probability of selecting the largest value. We show that this bound is in fact tight. We then investigate the case where the stopping time may additionally depend on a limited number of samples from~F, and show that even with o(n) samples α≥1/e. On the other hand, n samples allow for a significant improvement, while O(n2) samples are equivalent to knowledge of the distribution: specifically, with n samples α≥1-1/e≅0.632 and α≥ln(2)≅0.693, and with O(n2) samples α≥0.745-ε for any ε>0.

Locations

  • arXiv (Cornell University)
  • Queen Mary Research Online (Queen Mary University of London)
  • London School of Economics and Political Science Research Online (London School of Economics and Political Science)

Ask a Question About This Paper

Summary

Login to see paper summary

A central object in optimal stopping theory is the single-choice prophet inequality for independent, identically distributed random variables: Given a sequence of random variables $X_1,\dots,X_n$ drawn independently from a distribution … A central object in optimal stopping theory is the single-choice prophet inequality for independent, identically distributed random variables: Given a sequence of random variables $X_1,\dots,X_n$ drawn independently from a distribution $F$, the goal is to choose a stopping time $\tau$ so as to maximize $\alpha$ such that for all distributions $F$ we have $\mathbb{E}[X_\tau] \geq \alpha \cdot \mathbb{E}[\max_tX_t]$. What makes this problem challenging is that the decision whether $\tau=t$ may only depend on the values of the random variables $X_1,\dots,X_t$ and on the distribution $F$. For quite some time the best known bound for the problem was $\alpha\geq1-1/e\approx0.632$ [Hill and Kertz, 1982]. Only recently this bound was improved by Abolhassani et al. [2017], and a tight bound of $\alpha\approx0.745$ was obtained by Correa et al. [2017]. The case where $F$ is unknown, such that the decision whether $\tau=t$ may depend only on the values of the first $t$ random variables but not on $F$, is equally well motivated (e.g., [Azar et al., 2014]) but has received much less attention. A straightforward guarantee for this case of $\alpha\geq1/e\approx0.368$ can be derived from the solution to the secretary problem. Our main result is that this bound is tight. Motivated by this impossibility result we investigate the case where the stopping time may additionally depend on a limited number of samples from~$F$. An extension of our main result shows that even with $o(n)$ samples $\alpha\leq 1/e$, so that the interesting case is the one with $\Omega(n)$ samples. Here we show that $n$ samples allow for a significant improvement over the secretary problem, while $O(n^2)$ samples are equivalent to knowledge of the distribution: specifically, with $n$ samples $\alpha\geq1-1/e\approx0.632$ and $\alpha\leq\ln(2)\approx0.693$, and with $O(n^2)$ samples $\alpha\geq0.745-\epsilon$ for any $\epsilon>0$.
A central object in optimal stopping theory is the single-choice prophet inequality for independent, identically distributed random variables: Given a sequence of random variables $X_1,\dots,X_n$ drawn independently from a distribution … A central object in optimal stopping theory is the single-choice prophet inequality for independent, identically distributed random variables: Given a sequence of random variables $X_1,\dots,X_n$ drawn independently from a distribution $F$, the goal is to choose a stopping time $\tau$ so as to maximize $\alpha$ such that for all distributions $F$ we have $\mathbb{E}[X_\tau] \geq \alpha \cdot \mathbb{E}[\max_tX_t]$. What makes this problem challenging is that the decision whether $\tau=t$ may only depend on the values of the random variables $X_1,\dots,X_t$ and on the distribution $F$. For quite some time the best known bound for the problem was $\alpha\geq1-1/e\approx0.632$ [Hill and Kertz, 1982]. Only recently this bound was improved by Abolhassani et al. [2017], and a tight bound of $\alpha\approx0.745$ was obtained by Correa et al. [2017]. The case where $F$ is unknown, such that the decision whether $\tau=t$ may depend only on the values of the first $t$ random variables but not on $F$, is equally well motivated (e.g., [Azar et al., 2014]) but has received much less attention. A straightforward guarantee for this case of $\alpha\geq1/e\approx0.368$ can be derived from the solution to the secretary problem. Our main result is that this bound is tight. Motivated by this impossibility result we investigate the case where the stopping time may additionally depend on a limited number of samples from~$F$. An extension of our main result shows that even with $o(n)$ samples $\alpha\leq 1/e$, so that the interesting case is the one with $\Omega(n)$ samples. Here we show that $n$ samples allow for a significant improvement over the secretary problem, while $O(n^2)$ samples are equivalent to knowledge of the distribution: specifically, with $n$ samples $\alpha\geq1-1/e\approx0.632$ and $\alpha\leq\ln(2)\approx0.693$, and with $O(n^2)$ samples $\alpha\geq0.745-\epsilon$ for any $\epsilon>0$.
A central object in optimal stopping theory is the single-choice prophet inequality for independent, identically distributed random variables: Given a sequence of random variables $X_1,\dots,X_n$ drawn independently from a distribution … A central object in optimal stopping theory is the single-choice prophet inequality for independent, identically distributed random variables: Given a sequence of random variables $X_1,\dots,X_n$ drawn independently from a distribution $F$, the goal is to choose a stopping time $\tau$ so as to maximize $\alpha$ such that for all distributions $F$ we have $\mathbb{E}[X_\tau] \geq \alpha \cdot \mathbb{E}[\max_tX_t]$. What makes this problem challenging is that the decision whether $\tau=t$ may only depend on the values of the random variables $X_1,\dots,X_t$ and on the distribution $F$. For quite some time the best known bound for the problem was $\alpha\geq1-1/e\approx0.632$ [Hill and Kertz, 1982]. Only recently this bound was improved by Abolhassani et al. [2017], and a tight bound of $\alpha\approx0.745$ was obtained by Correa et al. [2017]. The case where $F$ is unknown, such that the decision whether $\tau=t$ may depend only on the values of the first $t$ random variables but not on $F$, is equally well motivated (e.g., [Azar et al., 2014]) but has received much less attention. A straightforward guarantee for this case of $\alpha\geq1/e\approx0.368$ can be derived from the solution to the secretary problem. Our main result is that this bound is tight. Motivated by this impossibility result we investigate the case where the stopping time may additionally depend on a limited number of samples from~$F$. An extension of our main result shows that even with $o(n)$ samples $\alpha\leq 1/e$, so that the interesting case is the one with $\Omega(n)$ samples. Here we show that $n$ samples allow for a significant improvement over the secretary problem, while $O(n^2)$ samples are equivalent to knowledge of the distribution: specifically, with $n$ samples $\alpha\geq1-1/e\approx0.632$ and $\alpha\leq\ln(2)\approx0.693$, and with $O(n^2)$ samples $\alpha\geq0.745-\epsilon$ for any $\epsilon>0$.
We take a unifying approach to single selection optimal stopping problems with random arrival order and independent sampling of items. In the problem we consider, a decision maker (DM) initially … We take a unifying approach to single selection optimal stopping problems with random arrival order and independent sampling of items. In the problem we consider, a decision maker (DM) initially gets to sample each of N items independently with probability p, and can observe the relative rankings of these sampled items. Then, the DM faces the remaining items in an online fashion, observing the relative rankings of all revealed items. While scanning the sequence the DM makes irrevocable stop/continue decisions and her reward for stopping the sequence facing the item with rank i is Y i . The goal of the DM is to maximize her reward. We start by studying the case in which the values Y i are known to the DM, and then move to the case in which these values are adversarial. For the former case we are able to recover several classic results in the area, thus giving a unifying framework for single selection optimal stopping. For the latter, we pin down the optimal algorithm, obtaining the optimal competitive ratios for all values of p. Funding: This work was partially supported by The Center for Mathematical Modeling at the University of Chile (ANID FB210005), Grant Anillo Information and Computation in Market Design (ANID ACT210005), FONDECYT 1220054 and 1181180, and a Meta Research PhD Fellowship.
We take a unifying approach to single selection optimal stopping problems with random arrival order and independent sampling of items. In the problem we consider, a decision maker (DM) initially … We take a unifying approach to single selection optimal stopping problems with random arrival order and independent sampling of items. In the problem we consider, a decision maker (DM) initially gets to sample each of $N$ items independently with probability $p$, and can observe the relative rankings of these sampled items. Then, the DM faces the remaining items in an online fashion, observing the relative rankings of all revealed items. While scanning the sequence the DM makes irrevocable stop/continue decisions and her reward for stopping the sequence facing the item with rank $i$ is $Y_i$. The goal of the DM is to maximize her reward. We start by studying the case in which the values $Y_i$ are known to the DM, and then move to the case in which these values are adversarial. For the former case, we write the natural linear program that captures the performance of an algorithm, and take its continuous limit. We prove a structural result about this continuous limit, which allows us to reduce the problem to a relatively simple real optimization problem. We establish that the optimal algorithm is given by a sequence of thresholds $t_1\le t_2\le\cdots$ such that the DM should stop if seeing an item with current ranking $i$ after time $t_i$. Additionally we are able to recover several classic results in the area such as those for secretary problem and the minimum ranking problem. For the adversarial case, we obtain a similar linear program with an additional stochastic dominance constraint. Using the same machinery we are able to pin down the optimal competitive ratios for all values of $p$. Notably, we prove that as $p$ approaches 1, our guarantee converges linearly to 0.745, matching that of the i.i.d.~prophet inequality. Also interesting is the case $p=1/2$, where our bound evaluates to $0.671$, which improves upon the state of the art.
In our problem, we are given access to a number of sequences of nonnegative i.i.d. random variables, whose realizations are observed sequentially. All sequences are of the same finite length. … In our problem, we are given access to a number of sequences of nonnegative i.i.d. random variables, whose realizations are observed sequentially. All sequences are of the same finite length. The goal is to pick one element from each sequence in order to maximize a reward equal to the expected value of the sum of the selections from all sequences. The decision on which element to pick is irrevocable, i.e., rejected observations cannot be revisited. Furthermore, the procedure terminates upon having a single selection from each sequence. Our observation constraint is that we cannot observe the current realization of all sequences at each time instant. Instead, we can observe only a smaller, yet arbitrary, subset of them. Thus, together with a stopping rule that determines whether we choose or reject the sample, the solution requires a sampling rule that determines which sequence to observe at each instant. The problem can be solved via dynamic programming, but with an exponential complexity in the length of the sequences. In order to make the solution computationally tractable, we introduce a decoupling approach and determine each stopping time using either a single-sequence dynamic programming, or a Prophet Inequality inspired threshold method, with polynomial complexity in the length of the sequences. We prove that the decoupling approach guarantees at least 0.745 of the optimal expected reward of the joint problem. In addition, we describe how to efficiently compute the optimal number of samples for each sequence, and its' dependence on the variances.
In this paper, we introduce an over-time variant of the well-known prophet inequality with i.i.d. random variables. Instead of stopping with one realized value at some point in the process, … In this paper, we introduce an over-time variant of the well-known prophet inequality with i.i.d. random variables. Instead of stopping with one realized value at some point in the process, we decide for each step how long we select the value. Then we cannot select another value until this period is over. The goal is to maximize the expectation of the sum of selected values. We describe the structure of the optimal stopping rule and give upper and lower bounds on the prophet inequality. In online algorithms terminology, this corresponds to bounds on the competitive ratio of an online algorithm.
In the classical optimal stopping problem, a player is given a sequence of random variables $X_1\ldots X_n$ with known distributions. After observing the realization of $X_i$, the player can either … In the classical optimal stopping problem, a player is given a sequence of random variables $X_1\ldots X_n$ with known distributions. After observing the realization of $X_i$, the player can either accept the observed reward from $X_i$ and stop, or reject the observed reward from $X_i$ and continue to observe the next variable $X_{i+1}$ in the sequence. Under any fixed ordering of the random variables, an optimal stopping policy, one that maximizes the player's expected reward, is given by the solution of a simple dynamic program. In this paper, we investigate the relatively less studied question of selecting the order in which the random variables should be observed so as to maximize the expected reward at the stopping time. To demonstrate the benefits of order selection, we prove a novel prophet inequality showing that, when the support of each random variable has size at most 2, the optimal ordering can achieve an expected reward that is within a factor of 1.25 of the expected hindsight maximum; this is an improvement over the corresponding factor of 2 for the worst-case ordering. We also provide a simple $O(n^2)$ algorithm for finding an optimal ordering in this case. Perhaps surprisingly, we demonstrate that a slightly more general case - each random variable $X_i$ is restricted to have 3-point support of form $\{0, m_i, 1\}$ - is NP-hard, and provide an FPTAS for that case.
Prophet inequalities are performance guarantees for online algorithms (a.k.a. stopping rules) solving the following "hiring problem": a decision maker sequentially inspects candidates whose values are independent random numbers and is … Prophet inequalities are performance guarantees for online algorithms (a.k.a. stopping rules) solving the following "hiring problem": a decision maker sequentially inspects candidates whose values are independent random numbers and is asked to hire at most one candidate by selecting it before inspecting the values of future candidates in the sequence. A classic result in optimal stopping theory asserts that there exist stopping rules guaranteeing that the decision maker will hire a candidate whose expected value is at least half as good as the expected value of the candidate hired by a "prophet", i.e. one who has simultaneous access to the realizations of all candidates' values. Such stopping rules have provably good performance but might treat individual candidates unfairly in a number of different ways. In this work we identify two types of individual fairness that might be desirable in optimal stopping problems. We call them identity-independent fairness (IIF) and time-independent fairness (TIF) and give precise definitions in the context of the hiring problem. We give polynomial-time algorithms for finding the optimal IIF/TIF stopping rules for a given instance with discrete support and we manage to recover a prophet inequality with factor $1/2$ when the decision maker's stopping rule is required to satisfy both fairness properties while the prophet is unconstrained. We also explore worst-case ratios between optimal selection rules in the presence vs. absence of individual fairness constraints, in both the online and offline settings. Finally, we consider a framework in which the decision maker doesn't know the distributions of candidates' values but has access to independent samples from each distribution. We provide constant-competitive IIF/TIF algorithms using one sample per distribution in the offline setting and two samples per distribution in the online setting.
In a prophet inequality problem, $n$ independent random variables are presented to a gambler one by one. The gambler decides when to stop the sequence and obtains the most recent … In a prophet inequality problem, $n$ independent random variables are presented to a gambler one by one. The gambler decides when to stop the sequence and obtains the most recent value as reward. We evaluate a stopping rule by the worst-case ratio between its expected reward and the expectation of the maximum variable. In the classic setting, the order is fixed, and the optimal ratio is known to be 1/2. Three variants of this problem have been extensively studied: the prophet-secretary model, where variables arrive in uniformly random order; the free-order model, where the gambler chooses the arrival order; and the i.i.d. model, where the distributions are all the same, rendering the arrival order irrelevant. Most of the literature assumes that distributions are known to the gambler. Recent work has considered the question of what is achievable when the gambler has access only to a few samples per distribution. Surprisingly, in the fixed-order case, a single sample from each distribution is enough to approximate the optimal ratio, but this is not the case in any of the three variants. We provide a unified proof that for all three variants of the problem, a constant number of samples (independent of n) for each distribution is good enough to approximate the optimal ratios. Prior to our work, this was known to be the case only in the i.i.d. variant. We complement our result showing that our algorithms can be implemented in polynomial time. A key ingredient in our proof is an existential result based on a minimax argument, which states that there must exist an algorithm that attains the optimal ratio and does not rely on the knowledge of the upper tail of the distributions. A second key ingredient is a refined sample-based version of a decomposition of the instance into "small" and "large" variables, first introduced by Liu et al. [EC'21].
Prophet inequalities for rewards maximization are fundamental to optimal stopping theory with extensive applications to mechanism design and online optimization. We study the \emph{cost minimization} counterpart of the classical prophet … Prophet inequalities for rewards maximization are fundamental to optimal stopping theory with extensive applications to mechanism design and online optimization. We study the \emph{cost minimization} counterpart of the classical prophet inequality: a decision maker is facing a sequence of costs $X_1, X_2, \dots, X_n$ drawn from known distributions in an online manner and \emph{must} ``stop'' at some point and take the last cost seen. The goal is to compete with a ``prophet'' who can see the realizations of all $X_i$'s upfront and always select the minimum, obtaining a cost of $\mathbb{E}[\min_i X_i]$. If the $X_i$'s are not identically distributed, no strategy can achieve a bounded approximation, even for random arrival order and $n = 2$. This leads us to consider the case where the $X_i$'s are independent and identically distributed (I.I.D.). For the I.I.D. case, we show that if the distribution satisfies a mild condition, the optimal stopping strategy achieves a (distribution-dependent) constant-factor approximation to the prophet's cost. Moreover, for MHR distributions, this constant is at most $2$. All our results are tight. We also demonstrate an example distribution that does not satisfy the condition and for which the competitive ratio of any algorithm is infinite. Turning our attention to single-threshold strategies, we design a threshold that achieves a $O\left(polylog{n}\right)$-factor approximation, where the exponent in the logarithmic factor is a distribution-dependent constant, and we show a matching lower bound. Finally, we note that our results can be used to design approximately optimal posted price-style mechanisms for procurement auctions which may be of independent interest. Our techniques utilize the \emph{hazard rate} of the distribution in a novel way, allowing for a fine-grained analysis which could find further applications in prophet inequalities.
Free order prophet inequalities bound the ratio between the expected value obtained by two parties each selecting one value from a set of independent random variables: a "prophet" who knows … Free order prophet inequalities bound the ratio between the expected value obtained by two parties each selecting one value from a set of independent random variables: a "prophet" who knows the value of each variable and may select the maximum one, and a "gambler" who is free to choose the order in which to observe the values but must select one of them immediately after observing it, without knowing what values will be sampled for the unobserved variables. It is known that the gambler can always ensure an expected payoff at least 0.669 … times as great as that of the prophet. In fact, even if the gambler uses a threshold stopping rule, meaning there is a fixed threshold value such that the gambler rejects every sample below the threshold and accepts every sample above it, the threshold can always be chosen so that the gambler-to-prophet ratio is at least . … In contrast, if the gambler must observe the values in a predetermined order, the tight bound for the gambler-to-prophet ratio is 1/2.In this work we investigate a model that interpolates between these two extremes. We assume there is a predefined set of permutations of the set indexing the random variables, and the gambler is free to choose the order of observation to be any one of these predefined permutations. Surprisingly, we show that even when only two orderings are allowed — namely, the forward and reverse orderings — the gambler-to-prophet ratio improves to …, the inverse of the golden ratio. As the number of allowed permutations grows beyond 2, a striking "double plateau" phenomenon emerges: after increasing from 0.5 to φ–1 when two permutations are allowed, the gambler-to-prophet ratio achievable by threshold stopping rules does not exceed φ–1 + o(1) until the number of allowed permutations grows to O(log n). The ratio reaches for a suitably chosen set of O(poly(∊–1) · log n) permutations and does not exceed even when the full set of n! permutations is allowed.
A prophet inequality states, for some $α\in[0,1]$, that the expected value achievable by a gambler who sequentially observes random variables $X_1,\dots,X_n$ and selects one of them is at least an … A prophet inequality states, for some $α\in[0,1]$, that the expected value achievable by a gambler who sequentially observes random variables $X_1,\dots,X_n$ and selects one of them is at least an $α$ fraction of the maximum value in the sequence. We obtain three distinct improvements for a setting that was first studied by Correa et al. (EC, 2019) and is particularly relevant to modern applications in algorithmic pricing. In this setting, the random variables are i.i.d. from an unknown distribution and the gambler has access to an additional $βn$ samples for some $β\geq 0$. We first give improved lower bounds on $α$ for a wide range of values of $β$; specifically, $α\geq(1+β)/e$ when $β\leq 1/(e-1)$, which is tight, and $α\geq 0.648$ when $β=1$, which improves on a bound of around $0.635$ due to Correa et al. (SODA, 2020). Adding to their practical appeal, specifically in the context of algorithmic pricing, we then show that the new bounds can be obtained even in a streaming model of computation and thus in situations where the use of relevant data is complicated by the sheer amount of data available. We finally establish that the upper bound of $1/e$ for the case without samples is robust to additional information about the distribution, and applies also to sequences of i.i.d. random variables whose distribution is itself drawn, according to a known distribution, from a finite set of known candidate distributions. This implies a tight prophet inequality for exchangeable sequences of random variables, answering a question of Hill and Kertz (Contemporary Mathematics, 1992), but leaves open the possibility of better guarantees when the number of candidate distributions is small, a setting we believe is of strong interest to applications.
Let $X_i$ be nonnegative, independent random variables with finite expectation, and $X^*_n = \max \{X_1, \ldots, X_n\}$. The value $EX^*_n$ is what can be obtained by a "prophet." A "mortal" … Let $X_i$ be nonnegative, independent random variables with finite expectation, and $X^*_n = \max \{X_1, \ldots, X_n\}$. The value $EX^*_n$ is what can be obtained by a "prophet." A "mortal" on the other hand, may use $k \ge 1$ stopping rules $t_1, \ldots, t_k$, yielding a return of $E[\max_{i=1, \ldots, k} X_{t_i}]$. For $n \ge k$ the optimal return is $V^n_k (X_1, \ldots, X_n) = \sup E [\max_{i = 1, \ldots, k} X_{t_i}]$ where the supremum is over all stopping rules $t_1, \ldots, t_k$ such that $P(t_i \le n) = 1$. We show that for a sequence of constants $g_k$ which can be evaluated recursively, the inequality $EX^*_n < g_k V^n_k (X_1, \ldots, X_n)$ holds for all such $X_1, \ldots, X_n$ and all $n \ge k$; \hbox{$g_1 = 2$}, $ g_2 = 1 + e^{-1} = 1.3678\ldots,\; g_3 = 1+ e^{1-e}= 1.1793\ldots,\break g_4 = 1.0979 \ldots$ and $g_5 = 1.0567 \ldots\,$. Similar results hold for infinite sequences $X_1, X_2, \ldots\,$.
Prophet inequalities are a cornerstone in optimal stopping and online decision-making. Traditionally, they involve the sequential observation of $n$ non-negative independent random variables and face irrevocable accept-or-reject choices. The goal … Prophet inequalities are a cornerstone in optimal stopping and online decision-making. Traditionally, they involve the sequential observation of $n$ non-negative independent random variables and face irrevocable accept-or-reject choices. The goal is to provide policies that provide a good approximation ratio against the optimal offline solution that can access all the values upfront -- the so-called prophet value. In the prophet inequality over time problem (POT), the decision-maker can commit to an accepted value for $\tau$ units of time, during which no new values can be accepted. This creates a trade-off between the duration of commitment and the opportunity to capture potentially higher future values. In this work, we provide best possible worst-case approximation ratios in the IID setting of POT for single-threshold algorithms and the optimal dynamic programming policy. We show a single-threshold algorithm that achieves an approximation ratio of $(1+e^{-2})/2\approx 0.567$, and we prove that no single-threshold algorithm can surpass this guarantee. With our techniques, we can analyze simple algorithms using $k$ thresholds and show that with $k=3$ it is possible to get an approximation ratio larger than $\approx 0.602$. Then, for each $n$, we prove it is possible to compute the tight worst-case approximation ratio of the optimal dynamic programming policy for instances with $n$ values by solving a convex optimization program. A limit analysis of the first-order optimality conditions yields a nonlinear differential equation showing that the optimal dynamic programming policy's asymptotic worst-case approximation ratio is $\approx 0.618$. Finally, we extend the discussion to adversarial settings and show an optimal worst-case approximation ratio of $\approx 0.162$ when the values are streamed in random order.
In a prophet inequality problem, n independent random variables are presented to a gambler one by one. The gambler decides when to stop the sequence and obtains the most recent … In a prophet inequality problem, n independent random variables are presented to a gambler one by one. The gambler decides when to stop the sequence and obtains the most recent value as reward. We evaluate a stopping rule by the worst-case ratio between its expected reward and the expectation of the maximum variable. In the classic setting, the order is fixed, and the optimal ratio is known to be 1/2. Three variants of this problem have been extensively studied: the prophet-secretary model, where variables arrive in uniformly random order; the free-order model, where the gambler chooses the arrival order; and the i.i.d. model, where the distributions are all the same, rendering the arrival order irrelevant. Most of the literature assumes that distributions are known to the gambler. Recent work has considered the question of what is achievable when the gambler has access only to a few samples per distribution. Surprisingly, in the fixed-order case, a single sample from each distribution is enough to approximate the optimal ratio, but this is not the case in any of the three variants. We provide a unified proof that for all three variants of the problem, a constant number of samples (independent of n) for each distribution is good enough to approximate the optimal ratios. Prior to our work, this was known to be the case only in the i.i.d. variant. Previous works relied on explicitly constructing sample-based algorithms that match the best possible ratio. Remarkably, the optimal ratios for the prophet-secretary and the free-order variants with full information are still unknown. Consequently, our result requires a significantly different approach than for the classic problem and the i.i.d. variant, where the optimal ratios and the algorithms that achieve them are known. We complement our result showing that our algorithms can be implemented in polynomial time. A key ingredient in our proof is an existential result based on a minimax argument, which states that there must exist an algorithm that attains the optimal ratio and does not rely on the knowledge of the upper tail of the distributions. A second key ingredient is a refined sample-based version of a decomposition of the instance into "small" and "large" variables, first introduced by Liu et al. [EC'21]. The universality of our approach opens avenues for generalization to other sample-based models. Furthermore, we uncover structural properties that might help pinpoint the optimal ratios in the full-information cases.
Free order prophet inequalities bound the ratio between the expected value obtained by two parties each selecting a value from a set of independent random variables: a "prophet" who knows … Free order prophet inequalities bound the ratio between the expected value obtained by two parties each selecting a value from a set of independent random variables: a "prophet" who knows the value of each variable and may select the maximum one, and a "gambler" who is free to choose the order in which to observe the values but must select one of them immediately after observing it, without knowing what values will be sampled for the unobserved variables. It is known that the gambler can always ensure an expected payoff at least $0.669\dots$ times as great as that of the prophet. In fact, there exists a threshold stopping rule which guarantees a gambler-to-prophet ratio of at least $1-\frac1e=0.632\dots$. In contrast, if the gambler must observe the values in a predetermined order, the tight bound for the gambler-to-prophet ratio is $1/2$. In this work we investigate a model that interpolates between these two extremes. We assume there is a predefined set of permutations, and the gambler is free to choose the order of observation to be any one of these predefined permutations. Surprisingly, we show that even when only two orderings are allowed---namely, the forward and reverse orderings---the gambler-to-prophet ratio improves to $\varphi^{-1}=0.618\dots$, the inverse of the golden ratio. As the number of allowed permutations grows beyond 2, a striking "double plateau" phenomenon emerges: after increasing from $0.5$ to $\varphi^{-1}$, the gambler-to-prophet ratio achievable by threshold stopping rules does not exceed $\varphi^{-1}+o(1)$ until the number of allowed permutations grows to $O(\log n)$. The ratio reaches $1-\frac1e-\varepsilon$ for a suitably chosen set of $O(\text{poly}(\varepsilon^{-1})\cdot\log n)$ permutations and does not exceed $1-\frac1e$ even when the full set of $n!$ permutations is allowed.
Prophet inequalities are a central object of study in optimal stopping theory. In the iid model, a gambler sees values in an online fashion, sampled independently from a given distribution. … Prophet inequalities are a central object of study in optimal stopping theory. In the iid model, a gambler sees values in an online fashion, sampled independently from a given distribution. Upon observing each value, the gambler either accepts it as a reward or irrevocably rejects it and proceeds to observe the next value. The goal of the gambler, who cannot see the future, is maximising the expected value of the reward while competing against the expectation of a prophet (the offline maximum). In other words, one seeks to maximise the gambler-to-prophet ratio of the expectations. This model has been studied with infinite, finite and unknown number of values. When the gambler faces a random number of values, the model is said to have random horizon. We consider the model in which the gambler is given a priori knowledge of the horizon's distribution. Alijani et al. (2020) designed a single-threshold algorithms achieving a ratio of $1/2$ when the random horizon has an increasing hazard rate and is independent of the values. We prove that with a single-threshold, a ratio of $1/2$ is actually achievable for several larger classes of horizon distributions, with the largest being known as the $\mathcal{G}$ class in reliability theory. Moreover, we extend this result to its dual, the $\overline{\mathcal{G}}$ class (which includes the decreasing hazard rate class), and to low-variance horizons. Finally, we construct the first example of a family of horizons, for which multiple thresholds are necessary to achieve a nonzero ratio. We establish that the Secretary Problem optimal stopping rule provides one such algorithm, paving the way towards the study of the model beyond single-threshold algorithms.
Suppose a customer is faced with a sequence of fluctuating prices, such as for airfare or a product sold by a large online retailer. Given distributional information about what price … Suppose a customer is faced with a sequence of fluctuating prices, such as for airfare or a product sold by a large online retailer. Given distributional information about what price they might face each day, how should they choose when to purchase in order to maximize the likelihood of getting the best price in retrospect? This is related to the classical secretary problem, but with values drawn from known distributions. In their pioneering work, Gilbert and Mosteller [\textit{J. Amer. Statist. Assoc. 1966}] showed that when the values are drawn i.i.d., there is a thresholding algorithm that selects the best value with probability approximately $0.5801$. However, the more general problem with non-identical distributions has remained unsolved. In this paper we provide an algorithm for the case of non-identical distributions that selects the maximum element with probability $1/e$, and we show that this is tight. We further show that if the observations arrive in a random order, this barrier of $1/e$ can be broken using a static threshold algorithm, and we show that our success probability is the best possible for any single-threshold algorithm under random observation order. Moreover, we prove that one can achieve a strictly better success probability using more general multi-threshold algorithms, unlike the non-random-order case. Along the way, we show that the best achievable success probability for the random-order case matches that of the i.i.d. case, which is approximately $0.5801$, under a no-superstars condition that no single distribution is very likely ex ante to generate the maximum value. We also extend our results to the problem of selecting one of the $k$ best values.
We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs, under two well-studied arrival models, namely edge arrival and vertex arrival. The weight of each edge is … We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs, under two well-studied arrival models, namely edge arrival and vertex arrival. The weight of each edge is drawn independently from an a-priori known probability distribution. Under edge arrival, the weight of each edge is revealed upon arrival, and the algorithm decides whether to include it in the matching or not. Under vertex arrival, the weights of all edges from the newly arriving vertex to all previously arrived vertices are revealed, and the algorithm decides which of these edges, if any, to include in the matching. To study these settings, we introduce a novel unified framework of batched prophet inequalities that captures online settings where elements arrive in batches; in particular it captures matching under the two aforementioned arrival models. Our algorithms rely on the construction of suitable online contention resolution schemes (OCRS). We first extend the framework of OCRS to batched-OCRS, we then establish a reduction from batched prophet inequality to batched OCRS, and finally we construct batched OCRSs with selectable ratios of 0.337 and 0.5 for edge and vertex arrival models, respectively. Both results improve the state of the art for the corresponding settings. For vertex arrival, our result is tight. Interestingly, pricing-based prophet inequalities with comparable competitive ratios are unknown.
In the Bayesian online selection problem, the goal is to design a pricing scheme for a sequence of arriving buyers that maximizes the expected social-welfare (or revenue) subject to different … In the Bayesian online selection problem, the goal is to design a pricing scheme for a sequence of arriving buyers that maximizes the expected social-welfare (or revenue) subject to different types of structural constraints. Inspired by applications in operations management, the focus of this paper is on the cases where the set of served customers is characterized by a laminar matroid.We give the first Polynomial-Time Approximation Scheme (PTAS) for the problem when the laminar matroid has constant depth. Our approach is based on rounding the solution of a hierarchy of linear programming relaxations that approximate the optimum online solution with any degree of accuracy plus a concentration argument that shows the rounding incurs a small loss. We also study another variation, which we call the production constrained problem, for which the allowable set of served customers is characterized by a collection of production and shipping constraints forming a certain form of laminar matroid. Using a similar LP-based approach, we design a PTAS for this problem even when the depth of the laminar matroid is not constant. The analysis exploits the negative dependency of the optimum selection rule in the lower-levels of the laminar family. Finally, we conclude with a discussion of the linear programming based approach employed in the paper and re-derive some of the classic prophet inequalities known in the literature.
The study of the prophet inequality problem in the limited information regime was initiated by Azar et al. [SODA'14] in the pursuit of prior-independent posted-price mechanisms. As they show, $O(1)$-competitive … The study of the prophet inequality problem in the limited information regime was initiated by Azar et al. [SODA'14] in the pursuit of prior-independent posted-price mechanisms. As they show, $O(1)$-competitive policies are achievable using only a single sample from the distribution of each agent. A notable portion of their results relies on reducing the design of single-sample prophet inequalities (SSPIs) to that of order-oblivious secretary (OOS) policies. The above reduction comes at the cost of not fully utilizing the available samples. However, to date, this is essentially the only method for proving SSPIs for many combinatorial sets. Very recently, Rubinstein et al. [ITCS'20] give a surprisingly simple algorithm which achieves the optimal competitive ratio for the single-choice SSPI problem $-$ a result which is unobtainable going through the reduction to secretary problems. Motivated by this discrepancy, we study the competitiveness of simple SSPI policies directly, without appealing to results from OOS literature. In this direction, we first develop a framework for analyzing policies against a greedy-like prophet solution. Using this framework, we obtain the first SSPI for general (non-bipartite) matching environments, as well as improved competitive ratios for transversal and truncated partition matroids. Second, motivated by the observation that many OOS policies for matroids decompose the problem into independent rank-$1$ instances, we provide a meta-theorem which applies to any matroid satisfying this partition property. Leveraging the recent results by Rubinstein et al., we obtain improved competitive guarantees (most by a factor of $2$) for a number of matroids captured by the reduction of Azar et al. Finally, we discuss applications of our SSPIs to the design of mechanisms for multi-dimensional limited information settings with improved revenue and welfare guarantees.
This paper considers prior-independent mechanism design, in which a single mechanism is designed to achieve approximately optimal performance on every prior distribution from a given class. Most results in this … This paper considers prior-independent mechanism design, in which a single mechanism is designed to achieve approximately optimal performance on every prior distribution from a given class. Most results in this literature focus on mechanisms with truthtelling equilibria, a.k.a., truthful mechanisms. Feng and Hartline [FOCS 2018] introduce the revelation gap to quantify the loss of the restriction to truthful mechanisms. We solve a main open question left in Feng and Hartline [FOCS 2018]; namely, we identify a non-trivial revelation gap for revenue maximization.
This paper explores a theory of generalization for learning problems on product distributions, complementing the existing learning theories in the sense that it does not rely on any complexity measures … This paper explores a theory of generalization for learning problems on product distributions, complementing the existing learning theories in the sense that it does not rely on any complexity measures of the hypothesis classes. The main contributions are two general sample complexity bounds: (1) $\tilde{O} \big( \frac{nk}{ε^2} \big)$ samples are sufficient and necessary for learning an $ε$-optimal hypothesis in any problem on an $n$-dimensional product distribution, whose marginals have finite supports of sizes at most $k$; (2) $\tilde{O} \big( \frac{n}{ε^2} \big)$ samples are sufficient and necessary for any problem on $n$-dimensional product distributions if it satisfies a notion of strong monotonicity from the algorithmic game theory literature. As applications of these theories, we match the optimal sample complexity for single-parameter revenue maximization (Guo et al., STOC 2019), improve the state-of-the-art for multi-parameter revenue maximization (Gonczarowski and Weinberg, FOCS 2018) and prophet inequality (Correa et al., EC 2019), and provide the first and tight sample complexity bound for Pandora's problem.
PAC-Bayes is a useful framework for deriving generalization bounds which was introduced by McAllester ('98). This framework has the flexibility of deriving distribution- and algorithm-dependent bounds, which are often tighter … PAC-Bayes is a useful framework for deriving generalization bounds which was introduced by McAllester ('98). This framework has the flexibility of deriving distribution- and algorithm-dependent bounds, which are often tighter than VC-related uniform convergence bounds. In this manuscript we present a limitation for the PAC-Bayes framework. We demonstrate an easy learning task that is not amenable to a PAC-Bayes analysis. Specifically, we consider the task of linear classification in 1D; it is well-known that this task is learnable using just $O(\log(1/δ)/ε)$ examples. On the other hand, we show that this fact can not be proved using a PAC-Bayes analysis: for any algorithm that learns 1-dimensional linear classifiers there exists a (realizable) distribution for which the PAC-Bayes bound is arbitrarily large.
In classical secretary problems, a sequence of $n$ elements arrive in a uniformly random order, and we want to choose a single item, or a set of size $K$. The … In classical secretary problems, a sequence of $n$ elements arrive in a uniformly random order, and we want to choose a single item, or a set of size $K$. The random order model allows us to escape from the strong lower bounds for the adversarial order setting, and excellent algorithms are known in this setting. However, one worrying aspect of these results is that the algorithms overfit to the model: they are not very robust. Indeed, if a few "outlier" arrivals are adversarially placed in the arrival sequence, the algorithms perform poorly. E.g., Dynkin's popular $1/e$-secretary algorithm fails with even a single adversarial arrival. We investigate a robust version of the secretary problem. In the Byzantine Secretary model, we have two kinds of elements: green (good) and red (rogue). The values of all elements are chosen by the adversary. The green elements arrive at times uniformly randomly drawn from $[0,1]$. The red elements, however, arrive at adversarially chosen times. Naturally, the algorithm does not see these colors: how well can it solve secretary problems? We give algorithms which get value comparable to the value of the optimal green set minus the largest green item. Specifically, we give an algorithm to pick $K$ elements that gets within $(1-\varepsilon)$ factor of the above benchmark, as long as $K \geq \mathrm{poly}(\varepsilon^{-1} \log n)$. We extend this to the knapsack secretary problem, for large knapsack size $K$. For the single-item case, an analogous benchmark is the value of the second-largest green item. For value-maximization, we give a $\mathrm{poly} \log^* n$-competitive algorithm, using a multi-layered bucketing scheme that adaptively refines our estimates of second-max over time. For probability-maximization, we show the existence of a good randomized algorithm, using the minimax principle.
Previous chapter Next chapter Full AccessProceedings Symposium on Simplicity in Algorithms (SOSA)Oblivious Online Contention Resolution SchemesHu Fu, Pinyan Lu, Zhihao Gavin Tang, Abner Turkieltaub, Hongxun Wu, Jinzhao Wu, and Qianfan … Previous chapter Next chapter Full AccessProceedings Symposium on Simplicity in Algorithms (SOSA)Oblivious Online Contention Resolution SchemesHu Fu, Pinyan Lu, Zhihao Gavin Tang, Abner Turkieltaub, Hongxun Wu, Jinzhao Wu, and Qianfan ZhangHu Fu, Pinyan Lu, Zhihao Gavin Tang, Abner Turkieltaub, Hongxun Wu, Jinzhao Wu, and Qianfan Zhangpp.268 - 278Chapter DOI:https://doi.org/10.1137/1.9781611977066.20PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract Contention resolution schemes (CRSs) are powerful tools for obtaining "ex post feasible" solutions from candidates that are drawn from "ex ante feasible" distributions. Online contention resolution schemes (OCRSs), the online version, have found myriad applications in Bayesian and stochastic problems, such as prophet inequalities and stochastic probing. When the ex ante distribution is unknown, it was unknown whether good CRSs/OCRSs exist with no sample (in which case the scheme is oblivious) or few samples from the distribution. In this work, we give a simple -selectable oblivious single item OCRS by mixing two simple schemes evenly, and show, via a Ramsey theory argument, that it is optimal. On the negative side, we show that no CRS or OCRS with O(1) samples can be Ω(1)-balanced/selectable (i.e., preserve every active candidate with a constant probability) for graphic or transversal matroids. Previous chapter Next chapter RelatedDetails Published:2022eISBN:978-1-61197-706-6 https://doi.org/10.1137/1.9781611977066Book Series Name:ProceedingsBook Code:SOSA22Book Pages:v + 320
Contention resolution schemes (CRSs) are powerful tools for obtaining "ex post feasible" solutions from candidates that are drawn from "ex ante feasible" distributions. Online contention resolution schemes (OCRSs), the online … Contention resolution schemes (CRSs) are powerful tools for obtaining "ex post feasible" solutions from candidates that are drawn from "ex ante feasible" distributions. Online contention resolution schemes (OCRSs), the online version, have found myriad applications in Bayesian and stochastic problems, such as prophet inequalities and stochastic probing. When the ex ante distribution is unknown, it was unknown whether good CRSs/OCRSs exist with no sample (in which case the scheme is oblivious) or few samples from the distribution. In this work, we give a simple $\frac{1}{e}$-selectable oblivious single item OCRS by mixing two simple schemes evenly, and show, via a Ramsey theory argument, that it is optimal. On the negative side, we show that no CRS or OCRS with $O(1)$ samples can be $\Omega(1)$-balanced/selectable (i.e., preserve every active candidate with a constant probability) for graphic or transversal matroids.
The classic analysis of online algorithms, due to its worst-case nature, can be quite pessimistic when the input instance at hand is far from worst-case. In contrast, machine learning approaches … The classic analysis of online algorithms, due to its worst-case nature, can be quite pessimistic when the input instance at hand is far from worst-case. In contrast, machine learning approaches shine in exploiting patterns in past inputs in order to predict the future. However, such predictions, although usually accurate, can be arbitrarily poor. Inspired by a recent line of work, we augment three well-known online settings with machine learned predictions about the future, and develop algorithms that take these predictions into account. In particular, we study the following online selection problems: (i) the classic secretary problem, (ii) online bipartite matching and (iii) the graphic matroid secretary problem. Our algorithms still come with a worst-case performance guarantee in the case that predictions are subpar while obtaining an improved competitive ratio (over the best-known classic online algorithm for each problem) when the predictions are sufficiently accurate. For each algorithm, we establish a trade-off between the competitive ratios obtained in the two respective cases.
We provide online algorithms for secretary matching in general weighted graphs, under the well-studied models of vertex and edge arrivals. In both models, edges are associated with arbitrary weights that … We provide online algorithms for secretary matching in general weighted graphs, under the well-studied models of vertex and edge arrivals. In both models, edges are associated with arbitrary weights that are unknown from the outset, and are revealed online. Under vertex arrival, vertices arrive online in a uniformly random order; upon the arrival of a vertex $v$, the weights of edges from $v$ to all previously arriving vertices are revealed, and the algorithm decides which of these edges, if any, to include in the matching. Under edge arrival, edges arrive online in a uniformly random order; upon the arrival of an edge $e$, its weight is revealed, and the algorithm decides whether to include it in the matching or not. We provide a $5/12$-competitive algorithm for vertex arrival, and show it is tight. For edge arrival, we provide a $1/4$-competitive algorithm. Both results improve upon state of the art bounds for the corresponding settings. Interestingly, for vertex arrival, secretary matching in general graphs outperforms secretary matching in bipartite graphs with 1-sided arrival, where $1/e$ is the best possible guarantee.
A celebrated impossibility result by Myerson and Satterthwaite (1983) shows that any truthful mechanism for two-sided markets that maximizes social welfare must run a deficit, resulting in a necessity to … A celebrated impossibility result by Myerson and Satterthwaite (1983) shows that any truthful mechanism for two-sided markets that maximizes social welfare must run a deficit, resulting in a necessity to relax welfare efficiency and the use of approximation mechanisms. Such mechanisms in general make extensive use of the Bayesian priors. In this work, we investigate a question of increasing theoretical and practical importance: how much prior information is required to design mechanisms with near-optimal approximations? Our first contribution is a more general impossibility result stating that no meaningful approximation is possible without any prior information, expanding the famous impossibility result of Myerson and Satterthwaite. Our second contribution is that one {\em single sample} (one number per item), arguably a minimum-possible amount of prior information, from each seller distribution is sufficient for a large class of two-sided markets. We prove matching upper and lower bounds on the best approximation that can be obtained with one single sample for subadditive buyers and additive sellers, regardless of computational considerations. Our third contribution is the design of computationally efficient blackbox reductions that turn any one-sided mechanism into a two-sided mechanism with a small loss in the approximation, while using only one single sample from each seller. On the way, our blackbox-type mechanisms deliver several interesting positive results in their own right, often beating even the state of the art that uses full prior information.
A prophet inequality states, for some $α\in[0,1]$, that the expected value achievable by a gambler who sequentially observes random variables $X_1,\dots,X_n$ and selects one of them is at least an … A prophet inequality states, for some $α\in[0,1]$, that the expected value achievable by a gambler who sequentially observes random variables $X_1,\dots,X_n$ and selects one of them is at least an $α$ fraction of the maximum value in the sequence. We obtain three distinct improvements for a setting that was first studied by Correa et al. (EC, 2019) and is particularly relevant to modern applications in algorithmic pricing. In this setting, the random variables are i.i.d. from an unknown distribution and the gambler has access to an additional $βn$ samples for some $β\geq 0$. We first give improved lower bounds on $α$ for a wide range of values of $β$; specifically, $α\geq(1+β)/e$ when $β\leq 1/(e-1)$, which is tight, and $α\geq 0.648$ when $β=1$, which improves on a bound of around $0.635$ due to Correa et al. (SODA, 2020). Adding to their practical appeal, specifically in the context of algorithmic pricing, we then show that the new bounds can be obtained even in a streaming model of computation and thus in situations where the use of relevant data is complicated by the sheer amount of data available. We finally establish that the upper bound of $1/e$ for the case without samples is robust to additional information about the distribution, and applies also to sequences of i.i.d. random variables whose distribution is itself drawn, according to a known distribution, from a finite set of known candidate distributions. This implies a tight prophet inequality for exchangeable sequences of random variables, answering a question of Hill and Kertz (Contemporary Mathematics, 1992), but leaves open the possibility of better guarantees when the number of candidate distributions is small, a setting we believe is of strong interest to applications.
We consider a fundamental problem in microeconomics: Selling a single item among a number of buyers whose values are drawn from known independent and regular distributions. There are four widely-used … We consider a fundamental problem in microeconomics: Selling a single item among a number of buyers whose values are drawn from known independent and regular distributions. There are four widely-used and widely-studied mechanisms in this literature: Anonymous Posted-Pricing (AP), Second-Price Auction with Anonymous Reserve (AR), Sequential Posted-Pricing (SPM), and Myerson Auction (OPT). Myerson Auction is optimal but complicated, which also suffers a few issues in practice such as fairness; AP is the simplest mechanism, but its revenue is also the lowest among these four; AR and SPM are of intermediate complexity and revenue. We study the revenue gaps among these four mechanisms, which is defined as the largest ratio between revenues from two mechanisms. We establish two tight ratios and one tighter bound:1.SPM/AP. This ratio studies the power of discrimination in pricing schemes. We obtain the tight ratio of roughly 2.62, closing the previous known bounds [e/(e – 1), e].2.AR/AP. This ratio studies the relative power of auction vs. pricing schemes, when no discrimination is allowed. We get the tight ratio of π2/6 ≈ 1.64, closing the previous known bounds [e/(e – 1), e].3.OPT/AR. This ratio studies the power of discrimination in auctions. Previously, the revenue gap is known to be in interval [2, e], and the lower-bound of 2 is conjectured to be tight [38, 37, 4]. We disprove this conjecture by obtaining a better lower-bound of 2.15.
We take a unifying approach to single selection optimal stopping problems with random arrival order and independent sampling of items. In the problem we consider, a decision maker (DM) initially … We take a unifying approach to single selection optimal stopping problems with random arrival order and independent sampling of items. In the problem we consider, a decision maker (DM) initially gets to sample each of N items independently with probability p, and can observe the relative rankings of these sampled items. Then, the DM faces the remaining items in an online fashion, observing the relative rankings of all revealed items. While scanning the sequence the DM makes irrevocable stop/continue decisions and her reward for stopping the sequence facing the item with rank i is Y i . The goal of the DM is to maximize her reward. We start by studying the case in which the values Y i are known to the DM, and then move to the case in which these values are adversarial. For the former case we are able to recover several classic results in the area, thus giving a unifying framework for single selection optimal stopping. For the latter, we pin down the optimal algorithm, obtaining the optimal competitive ratios for all values of p. Funding: This work was partially supported by The Center for Mathematical Modeling at the University of Chile (ANID FB210005), Grant Anillo Information and Computation in Market Design (ANID ACT210005), FONDECYT 1220054 and 1181180, and a Meta Research PhD Fellowship.
We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs, under two well-studied arrival models, namely edge arrival and vertex arrival. The weight of each edge is … We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs, under two well-studied arrival models, namely edge arrival and vertex arrival. The weight of each edge is drawn independently from an a-priori known probability distribution. Under edge arrival, the weight of each edge is revealed upon arrival, and the algorithm decides whether to include it in the matching or not. Under vertex arrival, the weights of all edges from the newly arriving vertex to all previously arrived vertices are revealed, and the algorithm decides which of these edges, if any, to include in the matching. To study these settings, we introduce a novel unified framework of batched prophet inequalities that captures online settings where elements arrive in batches; in particular it captures matching under the two aforementioned arrival models. Our algorithms rely on the construction of suitable online contention resolution scheme (OCRS). We first extend the framework of OCRS to batched-OCRS, we then establish a reduction from batched prophet inequality to batched OCRS, and finally we construct batched OCRSs with selectable ratios of 0.337 and 0.5 for edge and vertex arrival models, respectively. Both results improve the state of the art for the corresponding settings. For the vertex arrival, our result is tight. Interestingly, a pricing-based prophet inequality with comparable competitive ratios is unknown.
A prophet inequality states, for some α ∈ [0, 1], that the expected value achievable by a gambler who sequentially observes random variables X1, . . . , Xn and … A prophet inequality states, for some α ∈ [0, 1], that the expected value achievable by a gambler who sequentially observes random variables X1, . . . , Xn and selects one of them is at least an α fraction of the maximum value in the sequence. We obtain three distinct improvements for a setting that was first studied by Correa et al. (EC, 2019) and is particularly relevant to modern applications in algorithmic pricing. In this setting, the random variables are i.i.d. from an unknown distribution and the gambler has access to an additional βn samples for some β ≥ 0. We first give improved lower bounds on α for a wide range of values of β; specifically, α ≥ (1 + β)/e when β ≤ 1/(e − 1), which is tight, and α ≥ 0.648 when β = 1, which improves on a bound of around 0.635 due to Correa et al. (SODA, 2020). Adding to their practical appeal, specifically in the context of algorithmic pricing, we then show that the new bounds can be obtained even in a streaming model of computation and thus in situations where the use of relevant data is complicated by the sheer amount of data available. We finally establish that the upper bound of 1/e for the case without samples is robust to additional information about the distribution, and applies also to sequences of i.i.d. random variables whose distribution is itself drawn, according to a known distribution, from a finite set of known candidate distributions. This implies a tight prophet inequality for exchangeable sequences of random variables, answering a question of Hill and Kertz (Contemporary Mathematics, 1992), but leaves open the possibility of better guarantees when the number of candidate distributions is small, a setting we believe is of strong interest to applications.
In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions), and … In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions), and decides when to stop the process by taking the current item. The goal is to prove a "prophet inequality": that she can do approximately as well as a prophet with foreknowledge of all the values. In this work, we investigate this problem when the values are allowed to be correlated. Since non-trivial guarantees are impossible for arbitrary correlations, we consider a natural "linear" correlation structure introduced by Bateni et al. [ESA 2015] as a generalization of the common-base value model of Chawla et al. [GEB 2015]. A key challenge is that threshold-based algorithms, which are commonly used for prophet inequalities, no longer guarantee good performance for linear correlations. We relate this roadblock to another "augmentations" challenge that might be of independent interest: many existing prophet inequality algorithms are not robust to slight increase in the values of the arriving items. We leverage this intuition to prove bounds (matching up to constant factors) that decay gracefully with the amount of correlation of the arriving items. We extend these results to the case of selecting multiple items by designing a new $(1+o(1))$ approximation ratio algorithm that is robust to augmentations.
In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions), and … In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions), and decides when to stop the process by taking the current item. The goal is to prove a "prophet inequality": that she can do approximately as well as a prophet with foreknowledge of all the values. In this work, we investigate this problem when the values are allowed to be correlated. Since non-trivial guarantees are impossible for arbitrary correlations, we consider a natural "linear" correlation structure introduced by Bateni et al. [ESA'15] as a generalization of the common-base value model of Chawla et al. [GEB'15].
We extend the standard online worst-case model to accommodate past experience which is available to the online player in many practical scenarios. We do this by revealing a random sample … We extend the standard online worst-case model to accommodate past experience which is available to the online player in many practical scenarios. We do this by revealing a random sample of the adversarial input to the online player ahead of time. The online player competes with the expected optimal value on the part of the input that arrives online. Our model bridges between existing online stochastic models (e.g., items are drawn i.i.d. from a distribution) and the online worst-case model. We also extend in a similar manner (by revealing a sample) the online random-order model. We study the classical secretary problem in our new models. In the worst-case model we present a simple online algorithm with optimal competitive-ratio for any sample size. In the random-order model, we also give a simple online algorithm with an almost tight competitive-ratio for small sample sizes. Interestingly, we prove that for a large enough sample, no algorithm can be simultaneously optimal both in the worst-cast and random-order models.
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Single-Sample Prophet Inequalities via Greedy-Ordered SelectionConstantine Caramanis, Paul Dütting, Matthew Faw, Federico Fusco, Philip … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Single-Sample Prophet Inequalities via Greedy-Ordered SelectionConstantine Caramanis, Paul Dütting, Matthew Faw, Federico Fusco, Philip Lazos, Stefano Leonardi, Orestis Papadigenopoulos, Emmanouil Pountourakis, and Rebecca ReiffenhäuserConstantine Caramanis, Paul Dütting, Matthew Faw, Federico Fusco, Philip Lazos, Stefano Leonardi, Orestis Papadigenopoulos, Emmanouil Pountourakis, and Rebecca Reiffenhäuserpp.1298 - 1325Chapter DOI:https://doi.org/10.1137/1.9781611977073.54PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract We study single-sample prophet inequalities (SSPIs), i.e., prophet inequalities where only a single sample from each prior distribution is available. Besides a direct, and optimal, SSPI for the basic single choice problem [Rubinstein et al., 2020], most existing SSPI results were obtained via an elegant, but inherently lossy reduction to order-oblivious secretary (OOS) policies [Azar et al., 2014]. Motivated by this discrepancy, we develop an intuitive and versatile greedy-based technique that yields SSPIs directly rather than through the reduction to OOSs. Our results can be seen as generalizing and unifying a number of existing results in the area of prophet and secretary problems. Our algorithms significantly improve on the competitive guarantees for a number of interesting scenarios (including general matching with edge arrivals, bipartite matching with vertex arrivals, and certain matroids), and capture new settings (such as budget additive combinatorial auctions). Complementing our algorithmic results, we also consider mechanism design variants. Finally, we analyze the power and limitations of different SSPI approaches by providing a partial converse to the reduction from SSPI to OOS given by Azar et al. Previous chapter Next chapter RelatedDetails Published:2022eISBN:978-1-61197-707-3 https://doi.org/10.1137/1.9781611977073Book Series Name:ProceedingsBook Code:PRDA22Book Pages:xvii + 3771
Contention resolution schemes have proven to be a useful and unifying abstraction for a variety of constrained optimization problems, in both offline and online arrival models. Much of prior work … Contention resolution schemes have proven to be a useful and unifying abstraction for a variety of constrained optimization problems, in both offline and online arrival models. Much of prior work restricts attention to product distributions for the input set of elements, and studies contention resolution for increasingly general packing constraints, both offline and online. In this paper, we instead focus on generalizing the input distribution, restricting attention to matroid constraints in both the offline and online random arrival models. In particular, we study contention resolution when the input set is arbitrarily distributed, and may exhibit positive and/or negative correlations between elements. We characterize the distributions for which offline contention resolution is possible, and establish some of their basic closure properties. Our characterization can be interpreted as a distributional generalization of the matroid covering theorem. For the online random arrival model, we show that contention resolution is intimately tied to the secretary problem via two results. First, we show that a competitive algorithm for the matroid secretary problem implies that online contention resolution is essentially as powerful as offline contention resolution for matroids, so long as the algorithm is given the input distribution. Second, we reduce the matroid secretary problem to the design of an online contention resolution scheme of a particular form.
We study the single-choice Prophet Inequality problem when the gambler is given access to samples. We show that the optimal competitive ratio of $1/2$ can be achieved with a single … We study the single-choice Prophet Inequality problem when the gambler is given access to samples. We show that the optimal competitive ratio of $1/2$ can be achieved with a single sample from each distribution. When the distributions are identical, we show that for any constant $\varepsilon > 0$, $O(n)$ samples from the distribution suffice to achieve the optimal competitive ratio ($\approx 0.745$) within $(1+\varepsilon)$, resolving an open problem of Correa, Dutting, Fischer, and Schewior.
We study the greedy-based online algorithm for edge-weighted matching with (one-sided) vertex arrivals in bipartite graphs, and edge arrivals in general graphs. This algorithm was first studied more than a … We study the greedy-based online algorithm for edge-weighted matching with (one-sided) vertex arrivals in bipartite graphs, and edge arrivals in general graphs. This algorithm was first studied more than a decade ago by Korula and Pal for the bipartite case in the random-order model. While the weighted bipartite matching problem is solved in the random-order model, this is not the case in recent and exciting online models in which the online player is provided with a sample, and the arrival order is adversarial. The greedy-based algorithm is arguably the most natural and practical algorithm to be applied in these models. Despite its simplicity and appeal, and despite being studied in multiple works, the greedy-based algorithm was not fully understood in any of the studied online models, and its actual performance remained an open question for more than a decade. We provide a thorough analysis of the greedy-based algorithm in several online models. For vertex arrivals in bipartite graphs, we characterize the exact competitive-ratio of this algorithm in the random-order model, for any arrival order of the vertices subsequent to the sampling phase (adversarial and random orders in particular). We use it to derive tight analysis in the recent adversarial-order model with a sample (AOS model) for any sample size, providing the first result in this model beyond the simple secretary problem. Then, we generalize and strengthen the black box method of converting results in the random-order model to single-sample prophet inequalities, and use it to derive the state-of-the-art single-sample prophet inequality for the problem. Finally, we use our new techniques to analyze the greedy-based algorithm for edge arrivals in general graphs and derive results in all the mentioned online models. In this case as well, we improve upon the state-of-the-art single-sample prophet inequality.
This paper considers prior-independent mechanism design, in which a single mechanism is designed to achieve approximately optimal performance on every prior distribution from a given class. Most results in this … This paper considers prior-independent mechanism design, in which a single mechanism is designed to achieve approximately optimal performance on every prior distribution from a given class. Most results in this literature focus on mechanisms with truthtelling equilibria, a.k.a., truthful mechanisms. Feng and Hartline (2018) introduce the revelation gap to quantify the loss of the restriction to truthful mechanisms. We solve a main open question left in Feng and Hartline (2018); namely, we identify a non-trivial revelation gap for revenue maximization. Our analysis focuses on the canonical problem of selling a single item to a single agent with only access to a single sample from the agent's valuation distribution. We identify the sample-bid mechanism (a simple non-truthful mechanism) and upper-bound its prior-independent approximation ratio by 1.835 (resp. 1.296) for regular (resp. MHR) distributions. We further prove that no truthful mechanism can achieve prior-independent approximation ratio better than 1.957 (resp. 1.543) for regular (resp. MHR) distributions. Thus, a non-trivial revelation gap is shown as the sample-bid mechanism outperforms the optimal prior-independent truthful mechanism. On the hardness side, we prove that no (possibly non-truthful) mechanism can achieve prior-independent approximation ratio better than 1.073 even for uniform distributions.
In a single-parameter mechanism design problem, a provider is looking to sell some service to a group of potential buyers. Each buyer i has a private value vi for receiving … In a single-parameter mechanism design problem, a provider is looking to sell some service to a group of potential buyers. Each buyer i has a private value vi for receiving this service, and some feasibility constraint restricts which subsets of buyers can be served simultaneously. Recent work in economics introduced (deferred-acceptance) clock auctions as a superior class of auctions for this problem, due to their transparency, simplicity, and very strong incentive guarantees. Subsequent work in computer science focused on evaluating these auctions with respect to their social welfare approximation guarantees, leading to strong impossibility results: in the absence of prior information regarding the buyers' values, no deterministic clock auction can achieve a bounded approximation, even for simple feasibility constraints with only two maximal feasible sets.
This paper studies Makespan Minimization in the secretary model. Formally, jobs, specified by their processing times, are presented in a uniformly random order. An online algorithm has to assign each … This paper studies Makespan Minimization in the secretary model. Formally, jobs, specified by their processing times, are presented in a uniformly random order. An online algorithm has to assign each job permanently and irrevocably to one of m parallel and identical machines such that the expected time it takes to process them all, the makespan, is minimized. We give two deterministic algorithms. First, a straightforward adaptation of the semi-online strategy LightLoad provides a very simple algorithm retaining its competitive ratio of 1.75. A new and sophisticated algorithm is 1.535-competitive. These competitive ratios are not only obtained in expectation but, in fact, for all but a very tiny fraction of job orders. Classically, online makespan minimization only considers the worst-case order. Here, no competitive ratio below 1.885 for deterministic algorithms and 1.581 using randomization is possible. The best randomized algorithm so far is 1.916-competitive. Our results show that classical worst-case orders are quite rare and pessimistic for many applications. They also demonstrate the power of randomization when compared to much stronger deterministic reordering models. We complement our results by providing first lower bounds. A competitive ratio obtained on nearly all possible job orders must be at least 1.257. This implies a lower bound of 1.043 for both deterministic and randomized algorithms in the general model.
The secretary problem or the game of Googol are classic models for online selection problems that have received significant attention in the last five decades. We consider a variant of … The secretary problem or the game of Googol are classic models for online selection problems that have received significant attention in the last five decades. We consider a variant of the problem and explore its connections to data-driven online selection. Specifically, we are given $n$ cards with arbitrary non-negative numbers written on both sides. The cards are randomly placed on $n$ consecutive positions on a table, and for each card, the visible side is also selected at random. The player sees the visible side of all cards and wants to select the card with the maximum hidden value. To this end, the player flips the first card, sees its hidden value and decides whether to pick it or drop it and continue with the next card. We study algorithms for two natural objectives. In the first one, as in the secretary problem, the player wants to maximize the probability of selecting the maximum hidden value. We show that this can be done with probability at least $0.45292$. In the second one, similar to the prophet inequality, the player maximizes the expectation of the selected hidden value. We show a guarantee of at least $0.63518$ with respect to the expected maximum hidden value. Our algorithms result from combining three basic strategies. One is to stop whenever we see a value larger than the initial $n$ visible numbers. The second one is to stop the first time the last flipped card's value is the largest of the currently $n$ visible numbers in the table. And the third one is similar to the latter but it additionally requires that the last flipped value is larger than the value on the other side of its card. We apply our results to the prophet secretary problem with unknown distributions, but with access to a single sample from each distribution. Our guarantee improves upon $1-1/e$ for this problem, which is the currently best known guarantee and only works for the i.i.d. case.
A celebrated impossibility result by Myerson and Satterthwaite (1983) shows that any truthful mechanism for two-sided markets that maximizes social welfare must run a deficit, resulting in a necessity to … A celebrated impossibility result by Myerson and Satterthwaite (1983) shows that any truthful mechanism for two-sided markets that maximizes social welfare must run a deficit, resulting in a necessity to relax welfare efficiency and the use of approximation mechanisms. Such mechanisms in general make extensive use of the Bayesian priors. In this work, we investigate a question of increasing theoretical and practical importance: how much prior information is required to design mechanisms with near-optimal approximations?
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA)The Two-Sided Game of Googol and Sample-Based Prophet InequalitiesJosé R. Correa, Andrés Cristi, Boris Epstein, … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA)The Two-Sided Game of Googol and Sample-Based Prophet InequalitiesJosé R. Correa, Andrés Cristi, Boris Epstein, and José A. SotoJosé R. Correa, Andrés Cristi, Boris Epstein, and José A. Sotopp.2066 - 2081Chapter DOI:https://doi.org/10.1137/1.9781611975994.127PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract The secretary problem or the game of Googol are classic models for online selection problems that have received significant attention in the last five decades. In this paper we consider a variant of the problem and explore its connections to data-driven online selection. Specifically, we are given n cards with arbitrary nonnegative numbers written on both sides. The cards are randomly placed on n consecutive positions on a table, and for each card, the visible side is also selected at random. The player sees the visible side of all cards and wants to select the card with the maximum hidden value. To this end, the player flips the first card, sees its hidden value and decides whether to pick it or drop it and continue with the next card. We study algorithms for two natural objectives. In the first one, similar to the secretary problem, the player wants to maximize the probability of selecting the maximum hidden value. We show that this can be done with probability at least 0.45292. In the second objective, similar to the prophet inequality, the player wants to maximize the expectation of the selected hidden value. Here we show a guarantee of at least 0.63518 with respect to the expected maximum hidden value. Our algorithms result from combining three basic strategies. One is to stop whenever we see a value larger than the initial n visible numbers. The second one is to stop the first time the last flipped card's value is the largest of the currently n visible numbers in the table. And the third one is similar to the latter but to stop it additionally requires that the last flipped value is larger than the value on the other side of its card. We apply our results to the prophet secretary problem with unknown distributions, but with access to a single sample from each distribution. In particular, our guarantee improves upon 1 – 1/e for this problem, which is the currently best known guarantee and only works for the i.i.d. prophet inequality with samples. Previous chapter Next chapter RelatedDetails Published:2020eISBN:978-1-61197-599-4 https://doi.org/10.1137/1.9781611975994Book Series Name:ProceedingsBook Code:PRDA20Book Pages:xxii + 3011
The secretary problem is probably the purest model of decision making under uncertainty. In this paper we ask which advice can we give the algorithm to improve its success probability? … The secretary problem is probably the purest model of decision making under uncertainty. In this paper we ask which advice can we give the algorithm to improve its success probability? We propose a general model that unifies a broad range of problems: from the classic secretary problem with no advice, to the variant where the quality of a secretary is drawn from a known distribution and the algorithm learns each candidate's quality on arrival, to more modern versions of advice in the form of samples, to an ML-inspired model where a classifier gives us noisy signal about whether or not the current secretary is the best on the market. Our main technique is a factor revealing LP that captures all of the problems above. We use this LP formulation to gain structural insight into the optimal policy. Using tools from linear programming, we present a tight analysis of optimal algorithms for secretaries with samples, optimal algorithms when secretaries' qualities are drawn from a known distribution, and a new noisy binary advice model.
In this paper, we investigate two variants of the secretary problem. In these variants, we are presented with a sequence of numbers Xi that come from distributions Di, and that … In this paper, we investigate two variants of the secretary problem. In these variants, we are presented with a sequence of numbers Xi that come from distributions Di, and that arrive in either random or adversarial order. We do not know what the distributions are, but we have access to a single sample Yi from each distribution Di. After observing each number, we have to make an irrevocable decision about whether we would like to accept it or not with the goal of maximizing the probability of selecting the largest number.The random order version of this problem was first studied by Correa et al. [SODA 2020] who managed to construct an algorithm that achieves a probability of 0.4529. In this paper, we improve this probability to 0.5009, almost matching an upper bound of ≃ 0.5024 which we show follows from earlier work. We also show that there is an algorithm which achieves the probability of ≃ 0.5024 asymptotically if no particular distribution is especially likely to yield the largest number. For the adversarial order version of the problem, we show that we can select the maximum number with a probability of 1/4, and that this is best possible. Our work demonstrates that unlike in the case of the expected value objective studied by Rubinstein et al. [ITCS 2020], knowledge of a single sample is not enough to recover the factor of success guaranteed by full knowledge of the distribution.
We consider the prophet inequality problem for (not necessarily bipartite) matching problems with independent edge values, under both edge arrivals and vertex arrivals. We show constant-factor prophet inequalities for the … We consider the prophet inequality problem for (not necessarily bipartite) matching problems with independent edge values, under both edge arrivals and vertex arrivals. We show constant-factor prophet inequalities for the case where the online algorithm has only limited access to the value distributions through samples. First, we give a $16$-approximate prophet inequality for matching in general graphs under edge arrivals that uses only a single sample from each value distribution as prior information. Then, for bipartite matching and (one-sided) vertex arrivals, we show an improved bound of $8$ that also uses just a single sample from each distribution. Finally, we show how to turn our $16$-approximate single-sample prophet inequality into a truthful single-sample mechanism for online bipartite matching with vertex arrivals.
Implicitly defined (and easily approximated) universal constants $1.1 < a_n < 1.6, n = 2,3, \cdots$, are found so that if $X_1, X_2, \cdots$ are i.i.d. non-negative random variables and … Implicitly defined (and easily approximated) universal constants $1.1 < a_n < 1.6, n = 2,3, \cdots$, are found so that if $X_1, X_2, \cdots$ are i.i.d. non-negative random variables and if $T_n$ is the set of stop rules for $X_1, \cdots, X_n$, then $E(\max\{X_1, \cdots, X_n\}) \leq a_n \sup\{EX_t: t \in T_n\}$, and the bound $a_n$ is best possible. Similar universal constants $0 < b_n < \frac{1}{4}$ are found so that if the $\{X_i\}$ are i.i.d. random variables taking values only in $\lbrack a, b\rbrack$, then $E(\max\{X_1, \cdots, X_n\}) \leq \sup\{EX_t: t \in T_n\} + b_n(b - a)$, where again the bound $b_n$ is best possible. In both situations, extremal distributions for which equality is attained (or nearly attained) are given in implicit form.
Let $X_i \geq 0$ be independent, $i = 1, \cdots, n$, and $X^\ast_n = \max(X_1, \cdots, X_n)$. Let $t(c) (s(c))$ be the threshold stopping rule for $X_1, \cdots, X_n$, defined … Let $X_i \geq 0$ be independent, $i = 1, \cdots, n$, and $X^\ast_n = \max(X_1, \cdots, X_n)$. Let $t(c) (s(c))$ be the threshold stopping rule for $X_1, \cdots, X_n$, defined by $t(c) = \text{smallest} i$ for which $X_i \geq c(s(c) = \text{smallest} i$ for which $X_i > c), = n$ otherwise. Let $m$ be a median of the distribution of $X^\ast_n$. It is shown that for every $n$ and $\underline{X}$ either $EX^\ast_n \leq 2EX_{t(m)}$ or $EX^\ast_n \leq 2EX_{s(m)}$. This improves previously known results, [1], [4]. Some results for i.i.d. $X_i$ are also included.
This paper is devoted, in the main, to proving the asymptotic minimax character of the sample distribution function (d.f.) for estimating an unknown d.f. in $\mathscr{F}$ or $\mathscr{F}_c$ (defined in … This paper is devoted, in the main, to proving the asymptotic minimax character of the sample distribution function (d.f.) for estimating an unknown d.f. in $\mathscr{F}$ or $\mathscr{F}_c$ (defined in Section 1) for a wide variety of weight functions. Section 1 contains definitions and a discussion of measurability considerations. Lemma 2 of Section 2 is an essential tool in our proofs and seems to be of interest per se; for example, it implies the convergence of the moment generating function of $G_n$ to that of $G$ (definitions in (2.1)). In Section 3 the asymptotic minimax character is proved for a fundamental class of weight functions which are functions of the maximum deviation between estimating and true d.f. In Section 4 a device (of more general applicability in decision theory) is employed which yields the asymptotic minimax result for a wide class of weight functions of this character as a consequence of the results of Section 3 for weight functions of the fundamental class. In Section 5 the asymptotic minimax character is proved for a class of integrated weight functions. A more general class of weight functions for which the asymptotic minimax character holds is discussed in Section 6. This includes weight functions for which the risk function of the sample d.f. is not a constant over $\mathscr{F}_c.$ Most weight functions of practical interest are included in the considerations of Sections 3 to 6. Section 6 also includes a discussion of multinomial estimation problems for which the asymptotic minimax character of the classical estimator is contained in our results. Finally, Section 7 includes a general discussion of minimization of symmetric convex or monotone functionals of symmetric random elements, with special consideration of the "tied-down" Wiener process, and with a heuristic proof of the results of Sections 3, 4, 5, and much of Section 6.
We present a general framework for approximately reducing the mechanism design problem for multiple agents to single agent subproblems in the context of Bayesian combinatorial auctions. Our framework can be … We present a general framework for approximately reducing the mechanism design problem for multiple agents to single agent subproblems in the context of Bayesian combinatorial auctions. Our framework can be applied to any setting which roughly satisfies the following assumptions: (i) agents' types are distributed independently (not necessarily identically), (ii) objective function is additively separable over the agents, and (iii) there are no interagent constraints except for the supply constraints (i.e., that the total allocation of each item should not exceed the supply). Our framework is general in the sense that it makes no direct assumption about agents' valuations, type distributions, or single agent constraints (e.g., budget, incentive compatibility, etc.). We present two generic multiagent mechanisms which use single agent mechanisms as black boxes. If an $\alpha$-approximate single agent mechanism is available for each agent, and assuming no agent ever demands more than $\frac{1}{k}$ of all units of each item, our generic multiagent mechanisms are $\gamma_{k}\alpha$-approximations of the optimal multiagent mechanism, where $\gamma_{k}$ is a constant which is at least $1-\frac{1}{\sqrt{k+3}}$. As a byproduct of our construction, we present a generalization of prophet inequalities where both gambler and prophet are allowed to pick $k$ numbers each to receive a reward equal to their sum. Finally, we use our framework to obtain multiagent mechanisms with improved approximation factor for several settings from the literature.
We study generalizations of the ``Prophet Inequality'' and ``Secretary Problem'', where the algorithm is restricted to an arbitrary downward-closed set system. For 0,1 values, we give O(n)-competitive algorithms for both … We study generalizations of the ``Prophet Inequality'' and ``Secretary Problem'', where the algorithm is restricted to an arbitrary downward-closed set system. For 0,1 values, we give O(n)-competitive algorithms for both problems. This is close to the Omega(n/log n) lower bound due to Babaioff, Immorlica, and Kleinberg. For general values, our results translate to O(log(n) log(r))-competitive algorithms, where r is the cardinality of the largest feasible set. This resolves (up to the O(loglog(n) log(r)) factor) an open question posed to us by Bobby Kleinberg.
The setting of the classic prophet inequality is as follows: a gambler is shown the probability distributions of $n$ independent, non-negative random variables with finite expectations. In their indexed order, … The setting of the classic prophet inequality is as follows: a gambler is shown the probability distributions of $n$ independent, non-negative random variables with finite expectations. In their indexed order, a value is drawn from each distribution, and after every draw the gambler may choose to accept the value and end the game, or discard the value permanently and continue the game. What is the best performance that the gambler can achieve in comparison to a prophet who can always choose the highest value? Krengel, Sucheston, and Garling solved this problem in 1978, showing that there exists a strategy for which the gambler can achieve half as much reward as the prophet in expectation. Furthermore, this result is tight. In this work, we consider a setting in which the gambler is allowed much less information. Suppose that the gambler can only take one sample from each of the distributions before playing the game, instead of knowing the full distributions. We provide a simple and intuitive algorithm that recovers the original approximation of $\frac{1}{2}$. Our algorithm works against even an almighty adversary who always chooses a worst-case ordering, rather than the standard offline adversary. The result also has implications for mechanism design -- there is much interest in designing competitive auctions with a finite number of samples from value distributions rather than full distributional knowledge.