The Fundamental Solution to One-Dimensional Degenerate Diffusion Equation, I

Type: Preprint

Publication Date: 2019-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.1905.12716

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Fundamental solution to 1D degenerate diffusion equation with locally bounded coefficients 2021 Linan Chen
Ian Weih-Wadman
+ Fundamental Solution to 1D Degenerate Diffusion Equation with Locally Bounded Coefficients 2020 Linan Chen
Ian Weih-Wadman
+ The fundamental solution to 1D degenerate diffusion equation with one-sided boundary 2020 Linan Chen
Ian Weih-Wadman
+ Wright-Fisher Diffusion in One Dimension 2009 Charles L. Epstein
Rafe Mazzeo
+ PDF Chat Wright–Fisher Diffusion in One Dimension 2010 Charles L. Epstein
Rafe Mazzeo
+ Fundamental solutions of stochastic differential equations with drift 1989 Marek Rutokowski
+ Behavior of solutions to a degenerate diffusion problem 1997 Jingxue Yin
Hang Gao
+ PDF Chat Wright-Fisher stochastic heat equations with irregular drifts 2024 Clayton Barnes
Leonid Mytnik
Zhenyao Sun
+ Upper bounds for fundamental solutions to non-local diffusion equations with divergence free drift 2012 Yasunori Maekawa
Hideyuki Miura
+ Multiplicity of solutions to a degenerate diffusion problem 2003 Jorge García-Melián
José C. Sabina de Lis
+ Existence, uniqueness and the strong Markov property of solutions to Kimura diffusions with singular drift 2014 Camelia A. Pop
+ Existence, uniqueness and the strong Markov property of solutions to Kimura diffusions with singular drift 2014 Camelia A. Pop
+ PDF Chat On the fundamental solution for degenerate Kolmogorov equations with rough coefficients 2022 Francesca Anceschi
Annalaura Rebucci
+ Degenerate Diffusion Operators Arising in Population Biology (AM-185) 2017 Charles L. Epstein
Rafe Mazzeo
+ Blow-up dynamics for the aggregation equation with degenerate diffusion 2013 Yao Yao
Andrea L. Bertozzi
+ The Feynman–Kac formula and Harnack inequality for degenerate diffusions 2017 Charles L. Epstein
Camelia A. Pop
+ PDF Chat Optimal regularity for degenerate Kolmogorov equations in non-divergence form with rough-in-time coefficients 2023 Stefano Pagliarani
Giacomo Lucertini
Andrea Pascucci
+ Finite-time blow-up for solutions to a degenerate drift-diffusion equation for a fast-diffusion case 2019 Masaki Kurokiba
Takayoshi Ogawa
+ Existence, uniqueness and the strong Markov property of solutions to Kimura diffusions with singular drift 2015 Camelia A. Pop
+ On a degenerate diffusion equation of the form c(z)t = Ď‘(zx)x with application to population dynamics 1987 Michiel Bertsch
Morton E. Gurtin
Danielle Hilhorst