Do log factors matter? On optimal wavelet approximation and the foundations of compressed sensing

Type: Preprint

Publication Date: 2019-01-01

Citations: 3

DOI: https://doi.org/10.48550/arxiv.1905.10028

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Do Log Factors Matter? On Optimal Wavelet Approximation and the Foundations of Compressed Sensing 2021 Ben Adcock
Simone Brugiapaglia
Matthew King–Roskamp
+ Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? 2004 Emmanuel J. CandĂšs
Terence Tao
+ PDF Chat The Quest for Optimal Sampling: Computationally Efficient, Structure-Exploiting Measurements for Compressed Sensing 2015 Ben Adcock
Anders C. Hansen
Bogdan Roman
+ PDF Chat A Note on Compressed Sensing of Structured Sparse Wavelet Coefficients From Subsampled Fourier Measurements 2016 Ben Adcock
Anders C. Hansen
Bogdan Roman
+ The quest for optimal sampling: Computationally efficient, structure-exploiting measurements for compressed sensing 2014 Ben Adcock
Anders C. Hansen
Bogdan Roman
+ Infinite-dimensional compressed sensing and function interpolation 2015 Ben Adcock
+ PDF Chat Quantization for low-rank matrix recovery 2018 Eric Lybrand
Rayan Saab
+ PDF Chat Non-uniform Recovery Guarantees for Binary Measurements and Infinite-Dimensional Compressed Sensing 2021 Laura Thesing
Alexander Hansen
+ Quantization for Low-Rank Matrix Recovery 2017 Eric Lybrand
Rayan Saab
+ Quantization for Low-Rank Matrix Recovery 2017 Eric Lybrand
Rayan Saab
+ On optimal wavelet reconstructions from Fourier samples: linearity and universality of the stable sampling rate 2012 Ben Adcock
Anders C. Hansen
Clarice Poon
+ On optimal wavelet reconstructions from Fourier samples: Linearity and universality of the stable sampling rate 2013 Ben Adcock
Anders C. Hansen
Clarice Poon
+ Error Decay of (almost) Consistent Signal Estimations from Quantized Gaussian Random Projections 2014 Laurent Jacques
+ Compressed Sensing: How sharp is the Restricted Isometry Property 2010 Jeffrey D. Blanchard
Coralia Cartis
Jared Tanner
+ Error Decay of (almost) Consistent Signal Estimations from Quantized Gaussian Random Projections 2014 Laurent Jacques
+ PDF Chat BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING 2017 Ben Adcock
Anders C. Hansen
Clarice Poon
Bogdan Roman
+ Breaking the coherence barrier: asymptotic incoherence and asymptotic sparsity in compressed sensing 2013 Ben Adcock
Anders C. Hansen
Clarice Poon
Bogdan Roman
+ Optimal Phase Transitions in Compressed Sensing 2011 Yihong Wu
Sergio VerdĂș
+ From compression to compressed sensing 2012 Shirin Jalali
Arian Maleki
+ From compression to compressed sensing 2012 Shirin Jalali
Arian Maleki

Works Cited by This (39)

Action Title Year Authors
+ On the absence of the RIP in real-world applications of compressed sensing and the RIP in levels 2014 Alexander Bastounis
Anders C. Hansen
+ On asymptotic structure in compressed sensing 2014 Bogdan Roman
Anders C. Hansen
Ben Adcock
+ Generalized sampling: stable reconstructions, inverse problems and compressed sensing over the continuum 2013 Ben Adcock
Anders C. Hansen
Bogdan Roman
Gerd Teschke
+ Compressed sensing with structured sparsity and structured acquisition 2017 Claire Boyer
Jérémie Bigot
Pierre Weiss
+ PDF Chat Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices 2014 Tommaso Cai
Anru R. Zhang
+ Compressed sensing and best 𝑘-term approximation 2008 Albert Cohen
Wolfgang Dahmen
Ronald DeVore
+ PDF Chat Structured Compressed Sensing: From Theory to Applications 2011 Marco F. Duarte
Yonina C. Eldar
+ New tight frames of curvelets and optimal representations of objects with piecewise <i>C</i><sup>2</sup> singularities 2003 Emmanuel J. CandĂšs
David L. Donoho
+ PDF Chat Compressive ghost imaging 2009 Ori Katz
Yaron Bromberg
Yaron Silberberg
+ Stability and robustness of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>-minimizations with Weibull matrices and redundant dictionaries 2012 Simon Foucart