Reconstructing high-dimensional Hilbert-valued functions via compressed sensing

Type: Preprint

Publication Date: 2019-05-14

Citations: 0

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Reconstructing high-dimensional Hilbert-valued functions via compressed sensing 2019 Nick Dexter
Hoang Tran
Clayton Webster
+ Reconstructing high-dimensional Hilbert-valued functions via compressed sensing 2019 Nick Dexter
Hoang Tran
Clayton Webster
+ A mixed <i>ℓ</i><sub>1</sub> regularization approach for sparse simultaneous approximation of parameterized PDEs 2019 Nick Dexter
Hoang Tran
Clayton Webster
+ On efficient algorithms for computing near-best polynomial approximations to high-dimensional, Hilbert-valued functions from limited samples 2022 Ben Adcock
Simone Brugiapaglia
Nick Dexter
Sebastián Moraga
+ Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations 2014 Holger Rauhut
Christoph Schwab
+ PDF Chat Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations 2015 Holger Rauhut
Christoph Schwab
+ Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations 2014 Holger Rauhut
Christoph Schwab
+ Compressed sensing Petrov-Galerkin approximations for parametric PDEs 2015 Jean-Luc Bouchot
Benjamin Bykowski
Holger Rauhut
Christoph Schwab
+ Correcting for unknown errors in sparse high-dimensional function approximation 2017 Ben Adcock
Anyi Bao
Simone Brugiapaglia
+ Near-optimal learning of Banach-valued, high-dimensional functions via deep neural networks 2022 Ben Adcock
Simone Brugiapaglia
Nick Dexter
Sebastián Moraga
+ Weighted block compressed sensing for parametrized function approximation 2018 Jean-Luc Bouchot
+ Weighted block compressed sensing for parametrized function approximation 2018 Jean-Luc Bouchot
+ PDF Chat Unique reconstruction for discretized inverse problems: a random sketching approach 2024 Ruhui Jin
Qin Li
Anjali Nair
Samuel N. Stechmann
+ Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations 2014 Holger Rauhut
Christoph Schwab
+ Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data 2020 Ben Adcock
Simone Brugiapaglia
Nick Dexter
Sebastián Moraga
+ Stochastic collocation methods via minimization of Transformed $L_1$ penalty 2018 Ling Guo
Jing Li
Yongle Liu
+ PDF Chat Compressed Sensing with Sparse Corruptions: Fault-Tolerant Sparse Collocation Approximations 2018 Ben Adcock
Anyi Bao
John Jakeman
Akil Narayan
+ Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs 2015 Fabio Nobile
Lorenzo Tamellini
Raúl Tempone
+ Sparse polynomial approximations for affine parametric saddle point problems 2018 Peng Chen
Omar Ghattas
+ PDF Chat Compressed sensing for inverse problems II: applications to deconvolution, source recovery, and MRI 2025 Giovanni S. Alberti
Alessandro Felisi
Matteo Santacesaria
S. Ivan Trapasso

Works That Cite This (0)

Action Title Year Authors