Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Reconstructing high-dimensional Hilbert-valued functions via compressed sensing
Nick Dexter
,
Hoang Tran
,
Clayton Webster
Type:
Preprint
Publication Date:
2019-05-14
Citations:
0
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Reconstructing high-dimensional Hilbert-valued functions via compressed sensing
2019
Nick Dexter
Hoang Tran
Clayton Webster
+
Reconstructing high-dimensional Hilbert-valued functions via compressed sensing
2019
Nick Dexter
Hoang Tran
Clayton Webster
+
A mixed <i>ℓ</i><sub>1</sub> regularization approach for sparse simultaneous approximation of parameterized PDEs
2019
Nick Dexter
Hoang Tran
Clayton Webster
+
On efficient algorithms for computing near-best polynomial approximations to high-dimensional, Hilbert-valued functions from limited samples
2022
Ben Adcock
Simone Brugiapaglia
Nick Dexter
Sebastián Moraga
+
Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations
2014
Holger Rauhut
Christoph Schwab
+
PDF
Chat
Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations
2015
Holger Rauhut
Christoph Schwab
+
Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations
2014
Holger Rauhut
Christoph Schwab
+
Compressed sensing Petrov-Galerkin approximations for parametric PDEs
2015
Jean-Luc Bouchot
Benjamin Bykowski
Holger Rauhut
Christoph Schwab
+
Correcting for unknown errors in sparse high-dimensional function approximation
2017
Ben Adcock
Anyi Bao
Simone Brugiapaglia
+
Near-optimal learning of Banach-valued, high-dimensional functions via deep neural networks
2022
Ben Adcock
Simone Brugiapaglia
Nick Dexter
Sebastián Moraga
+
Weighted block compressed sensing for parametrized function approximation
2018
Jean-Luc Bouchot
+
Weighted block compressed sensing for parametrized function approximation
2018
Jean-Luc Bouchot
+
PDF
Chat
Unique reconstruction for discretized inverse problems: a random sketching approach
2024
Ruhui Jin
Qin Li
Anjali Nair
Samuel N. Stechmann
+
Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations
2014
Holger Rauhut
Christoph Schwab
+
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
2020
Ben Adcock
Simone Brugiapaglia
Nick Dexter
Sebastián Moraga
+
Stochastic collocation methods via minimization of Transformed $L_1$ penalty
2018
Ling Guo
Jing Li
Yongle Liu
+
PDF
Chat
Compressed Sensing with Sparse Corruptions: Fault-Tolerant Sparse Collocation Approximations
2018
Ben Adcock
Anyi Bao
John Jakeman
Akil Narayan
+
Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs
2015
Fabio Nobile
Lorenzo Tamellini
Raúl Tempone
+
Sparse polynomial approximations for affine parametric saddle point problems
2018
Peng Chen
Omar Ghattas
+
PDF
Chat
Compressed sensing for inverse problems II: applications to deconvolution, source recovery, and MRI
2025
Giovanni S. Alberti
Alessandro Felisi
Matteo Santacesaria
S. Ivan Trapasso
Works That Cite This (0)
Action
Title
Year
Authors
Works Cited by This (12)
Action
Title
Year
Authors
+
Fixed-Point Continuation for $\ell_1$-Minimization: Methodology and Convergence
2008
Elaine Hale
Wotao Yin
Yin Zhang
+
Convex Analysis and Monotone Operator Theory in Hilbert Spaces
2017
Heinz H. Bauschke
Patrick L. Combettes
+
A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data
2008
Fabio Nobile
Raúl Tempone
Clayton Webster
+
Polynomial approximation via compressed sensing of high-dimensional functions on lower sets
2017
Abdellah Chkifa
Nick Dexter
Hoang Tran
Clayton Webster
+
On the Strong Convergence of Forward-Backward Splitting in Reconstructing Jointly Sparse Signals
2017
Nick Dexter
Hoang Tran
Clayton Webster
+
Explicit cost bounds of stochastic Galerkin approximations for parameterized PDEs with random coefficients
2016
Nick Dexter
Clayton Webster
Guannan Zhang
+
PDF
Chat
Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients
2017
Hoang Tran
Clayton Webster
Guannan Zhang
+
PDF
Chat
Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies
2014
Jerrad Hampton
Alireza Doostan
+
PDF
Chat
A non-adapted sparse approximation of PDEs with stochastic inputs
2011
Alireza Doostan
Houman Owhadi
+
PDF
Chat
Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations
2015
Holger Rauhut
Christoph Schwab