Quantitative Absolute Continuity of Harmonic Measure and the Dirichlet Problem: A Survey of Recent Progress

Type: Article

Publication Date: 2019-05-20

Citations: 11

DOI: https://doi.org/10.1007/s10114-019-8444-z

Locations

  • Acta Mathematica Sinica English Series - View

Similar Works

Action Title Year Authors
+ A review of recent and older results on the absolute continuity of harmonic measure 1988 M. Cranston
Carl Mueller
+ The Dirichlet Problem and Harmonic Measures 2024 Edward B. Saff
Вилмос Тотик
+ Absolute continuity of harmonic measure for domains with lower regular boundaries 2016 Jonas Azzam
Mihalis Mourgoglou
Murat Akman
+ PDF Chat Square function estimates, the BMO Dirichlet problem, and absolute continuity of harmonic measure on lower-dimensional sets 2019 Svitlana Mayboroda
Zihui Zhao
+ Approximation by Harmonic Functions and the Dirichlet Problem 1992 Ivan Netuka
+ The principle of harmonic measure and its applications 1950 Walter Roy Strickler
+ A global harmonic function theory in the context of Dirichlet spaces 1978 Edward R. Dougherty
+ Convergence of Harmonic Measures and Capacities 2023 Вилмос Тотик
+ Applications of quasi Dirichlet bounded harmonic functions 1983 Cabiria Andreian Cazacu
Nicu Boboc
Martin Jurchescu
Ion Suciu
+ A note on Dirichlet regularity on harmonic spaces 1991 Noriaki Suzuki
+ Dirichlet finite harmonic measures on topological balls 2000 Mitsuru Nakai
+ The Dirichlet Problem for Harmonic Functions 1980 Ivan Netuka
+ The absolute continuity of elliptic measure revisited 1998 Carlos E. Kenig
Jill Pipher
+ PDF Chat Harmonically weighted Dirichlet spaces associated with finitely atomic measures 2000 Donald Sarason
+ Harmonically weighted dirichlet spaces associated with finitely atomic measures 1998 Donald Sarason
+ Estimates of harmonic measure 1977 Björn E. J. Dahlberg
+ PDF Chat Topology of absolute minima of functionals of volume type and the Dirichlet functional 1989 Dao Chong Tkhi
A. T. Fomenko
+ PDF Chat The Poisson integral: A study in the uniqueness of harmonic functions 1941 František Wolf
+ Harmonic measures and bowen-margulis measures 1990 F. Ledrappier
+ A geometric characterization of the weak-$A_\infty$ condition for harmonic measure 2018 Jonas Azzam
Mihalis Mourgoglou
Xavier Tolsa