Corank-1 projections and the randomised Horn problem

Type: Article

Publication Date: 2020-05-27

Citations: 13

DOI: https://doi.org/10.2140/tunis.2021.3.55

Abstract

Let $\hat{\boldsymbol x}$ be a normalised standard complex Gaussian vector, and project an Hermitian matrix $A$ onto the hyperplane orthogonal to $\hat{\boldsymbol x}$. In a recent paper Faraut [Tunisian J. Math. \textbf{1} (2019), 585--606] has observed that the corresponding eigenvalue PDF has an almost identical structure to the eigenvalue PDF for the rank 1 perturbation $A + b \hat{\boldsymbol x} \hat{\boldsymbol x}^\dagger$, and asks for an explanation. We provide this by way of a common derivation involving the secular equations and associated Jacobians. This applies too in related setting, for example when $\hat{\boldsymbol x}$ is a real Gaussian and $A$ Hermitian, and also in a multiplicative setting $A U B U^\dagger$ where $A, B$ are fixed unitary matrices with $B$ a multiplicative rank 1 deviation from unity, and $U$ is a Haar distributed unitary matrix. Specifically, in each case there is a dual eigenvalue problem giving rise to a PDF of almost identical structure.

Locations

  • Tunisian Journal of Mathematics - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Pseudo-Hermitian Gaussian Matrices 2024 M. P. Pato
+ PDF Chat Random anti-commuting Hermitian matrices 2024 John E. McCarthy
Hazel T. McCarthy
+ Pseudo-Hermitian Random Matrices 2024 M. P. Pato
+ Orthogonal Polynomials and Random Matrix Theory 2001 Mourad E. H. Ismail
+ Hermitian and symmetric matrices 1985 Roger A. Horn
Charles R. Johnson
+ Spectral rigidity of non-Hermitian symmetric random matrices 2020 Yi Huang
B. I. Shklovskiǐ
+ Orthogonal polynomials, Jacobi matrices and random matrices 2008 L. А. Pastur
+ A Classification of Non-Hermitian Random Matrices 2002 Denis Bernard
André LeClair
+ PDF Chat Characteristic Polynomials of Sparse Non-Hermitian Random Matrices 2025 Ievgenii Afanasiev
Tatyana Shcherbina
+ Reviews - The Oxford handbook of random matrix theory, Gernot Akemann, Jinho Baik, Philippe Di Francesco (eds) Pp. 919. £110. 2011. ISBN: 978-0-19-957400-1 (Oxford University Press). 2013 René L. Schilling
+ Canonical Equation K 5 for Symmetric Random Matrices with Infinitely Small Entries 2001 Vyacheslav L. Girko
+ Random matrices with prescribed eigenvalues and expectation values for random quantum states 2020 Elizabeth Meckes
Mark W. Meckes
+ Spectra of Sparse Non-Hermitian Random Matrices 2018 Fernando L. Metz
Izaak Neri
Tim Rogers
+ Random Matrix Theory 2020 Ariel Amir
+ Harmonic analysis for rank-1 Randomised Horn Problems 2019 Jiyuan Zhang
Mario Kieburg
Peter J. Forrester
+ Hermitian and unitary matrix pencils 1974 Anna Lee
+ PDF Chat Classical skew orthogonal polynomials and random matrices 2000 Mark Adler
Peter J. Forrester
Taro Nagao
Pierre van Moerbeke
+ PDF Chat Gaussian ensembles of random hermitian matrices intermediate between orthogonal and unitary ones 1983 Aditya Pandey
M. L. Mehta
+ PDF Chat Gaussian-Random Ensembles of Pseudo-Hermitian Matrices 2004 Zafar Ahmed
+ Random Eigenvalue Problems 1983 Jürgen vom Scheidt
Walter Purkert