On Arithmetic Progressions in Symmetric Sets in Finite Field Model

Type: Article

Publication Date: 2020-09-18

Citations: 0

DOI: https://doi.org/10.37236/9242

Abstract

We consider two problems regarding arithmetic progressions in symmetric sets in the finite field (product space) model. First, we show that a symmetric set $S \subseteq \mathbb{Z}_q^n$ containing $|S| = \mu \cdot q^n$ elements must contain at least $\delta(q, \mu) \cdot q^n \cdot 2^n$ arithmetic progressions $x, x+d, \ldots, x+(q-1)\cdot d$ such that the difference $d$ is restricted to lie in $\{0,1\}^n$. Second, we show that for prime $p$ a symmetric set $S\subseteq\mathbb{F}_p^n$ with $|S|=\mu\cdot p^n$ elements contains at least $\mu^{C(p)}\cdot p^{2n}$ arithmetic progressions of length $p$. This establishes that the qualitative behavior of longer arithmetic progressions in symmetric sets is the same as for progressions of length three.

Locations

  • The Electronic Journal of Combinatorics - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ On arithmetic progressions in symmetric sets in finite field model 2018 Jan Hązła
+ On very restricted arithmetic progressions in symmetric sets in finite field model 2018 Jan Hązła
+ PDF Chat ARITHMETIC AND GEOMETRIC PROGRESSIONS IN PRODUCT SETS OVER FINITE FIELDS 2008 Igor E. Shparlinski
+ Arithmetic and Geometric Progressions in Productsets over Finite Fields 2007 Igor E. Shparlinski
+ Arithmetic progressions in certain subsets of finite fields 2023 Sadık Eyidoğan
Haydar Göral
Mustafa Kutay Kutlu
+ $$\kappa $$ κ -Factor in arithmetic progressions 2015 Olivier Bordellès
+ PDF Chat Arithmetic progressions (mod 𝑚) 2003 Bruce Landman
Aaron Robertson
+ Arithmetic progressions (𝑚𝑜𝑑𝑚) 2014 Bruce Landman
Aaron Robertson
+ PDF Chat Three-term polynomial progressions in subsets of finite fields 2018 Sarah Peluse
+ Palindromic Numbers in Arithmetic Progressions 1998 Matúš Harminc
Roman Soták
+ Geometric progressions in vector sumsets over finite fields 2020 Igor E. Shparlinski
+ PDF Chat On Arithmetic Progressions in Model Sets 2021 Anna Klick
Nicolae Strungaru
Adi Tcaciuc
+ Arithmetic progressions in subset sums 1992 P. Erdős
Andràs Sárközy
+ Arithmetic Progressions 1978 P. R. Halmos
C. Ryavec
+ Arithmetic progressions 2019 John Bird
+ Arithmetic Progressions 1983 P. R. Halmos
C. Ryavec
+ Arithmetic Progressions 1978 P. R. Halmos
C. Ryavec
+ Arithmetic progressions 2004 Israel M. Gelfand
Alexander Shen
+ Product Sets of Arithmetic Progressions in Function Fields 2023 Lior Bary‐Soroker
Noam Goldgraber
+ Arithmetic progressions: Combinatorial and number-theoretic perspectives 2007 Sujith Vijay

Works That Cite This (0)

Action Title Year Authors