The Mirkovic-Vilonen basis and Duistermaat-Heckman measures

Type: Preprint

Publication Date: 2019-05-22

Citations: 12

Abstract

Using the geometric Satake correspondence, the Mirkovic-Vilonen cycles in the affine Grasssmannian give bases for representations of a semisimple group G . We prove that these bases are "perfect", i.e. compatible with the action of the Chevelley generators of the positive half of the Lie algebra g. We compute this action in terms of intersection multiplicities in the affine Grassmannian. We prove that these bases stitch together to a basis for the algebra C[N] of regular functions on the unipotent subgroup. We compute the multiplication in this MV basis using intersection multiplicities in the Beilinson-Drinfeld Grassmannian, thus proving a conjecture of Anderson. In the third part of the paper, we define a map from C[N] to a convolution algebra of measures on the dual of the Cartan subalgebra of g. We characterize this map using the universal centralizer space of G. We prove that the measure associated to an MV basis element equals the Duistermaat-Heckman measure of the corresponding MV cycle. This leads to a proof of a conjecture of Muthiah. Finally, we use the map to measures to compare the MV basis and Lusztig's dual semicanonical basis. We formulate conjectures relating the algebraic invariants of preprojective algebra modules (which underlie the dual semicanonical basis) and geometric invariants of MV cycles. In the appendix, we use these ideas to prove that the MV basis and the dual semicanonical basis do not coincide in SL_6.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View

Similar Works

Action Title Year Authors
+ PDF Chat The Mirković–Vilonen basis and Duistermaat–Heckman measures 2021 Pierre Baumann
Joel Kamnitzer
Allen Knutson
+ The algebra of Mirkovic-Vilonen cycles in type A 2005 Jared E. Anderson
M. G. Kogan
+ PDF Chat The Algebra of Mirkovic-Vilonen Cycles in Type A 2006 Jared E. Anderson
M. G. Kogan
+ None 2003 Jared E. Anderson
M. G. Kogan
+ PDF Chat Weyl group action on weight zero Mirković-Vilonen basis and equivariant multiplicities 2021 Dinakar Muthiah
+ The Duistermaat-Heckman formula and Chern-Schwartz-MacPherson classes 2022 Allen Knutson
+ Weyl group action on weight zero Mirković-Vilonen basis and equivariant multiplicities 2018 Dinakar Muthiah
+ Weyl group action on weight zero Mirkovi\'c-Vilonen basis and equivariant multiplicities 2018 Dinakar Muthiah
+ A vector partition function for the multiplicities of sl_k(C) 2003 Sara Billey
Victor Guillemin
Etienne Rassart
+ On Mirković-Vilonen cycles and crystals combinatorics 2006 Pierre Baumann
Stéphane Gaussent
+ Mirkovic-Vilonen cycles and polytopes in type A 2003 Jared E. Anderson
M. G. Kogan
+ The Duistermaat-Heckman Measure for the Coadjoint Orbits of Compact Semisimple Lie Groups 1998 Ami Haviv
+ Dualities, affine vertex operator algebras, and geometry of complex polynomials 1998 Julius Borcea
+ Unipotent ideals and Harish-Chandra bimodules 2022 Dmytro Matvieievskyi
+ A geometric approach to characters of Hecke algebras 2022 Alex Abreu
Antonio Nigro
+ Characters, Coadjoint Orbits and Duistermaat-Heckman Integrals 2020 Anton Alekseev
Samson L. Shatashvili
+ PDF Chat Orbital Integrals and Normalizations of Measures 2024 Julia Gordon
+ PDF Chat A vector partition function for the multiplicities of slkC 2004 Sara Billey
Victor Guillemin
Etienne Rassart
+ PDF Chat Crystals and monodromy of Bethe vectors 2020 Iva Halacheva
Joel Kamnitzer
Leonid Rybnikov
Alex Weekes
+ PDF Chat Quantization of algebraic cones and Vogan’s conjecture 1998 Michèle Vergne