2D Solitons in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:mrow></mml:math> -Symmetric Photonic Lattices

Type: Article

Publication Date: 2019-12-18

Citations: 37

DOI: https://doi.org/10.1103/physrevlett.123.253903

Abstract

Over the last few years, parity-time ($\mathcal{P}\mathcal{T}$) symmetry has been the focus of considerable attention. Ever since, pseudo-Hermitian notions have permeated a number of fields ranging from optics to atomic and topological physics, as well as optomechanics, to mention a few. Unlike their Hermitian counterparts, nonconservative systems do not exhibit a priori real eigenvalues and hence unitary evolution. However, once $\mathcal{P}\mathcal{T}$ symmetry is introduced, such dissipative systems can surprisingly display a real eigenspectrum, thus ensuring energy conservation during evolution. In optics, $\mathcal{P}\mathcal{T}$ symmetry can be readily established by incorporating, in a balanced way, regions having an equal amount of optical gain and loss. However, thus far, all optical realizations of such $\mathcal{P}\mathcal{T}$ symmetry have been restricted to a single transverse dimension (1D), such as arrays of optical waveguides or active coupled cavity arrangements. In most cases, only the loss function was modulated---a restrictive aspect that is only appropriate for linear systems. Here, we present an experimental platform for investigating the interplay between $\mathcal{P}\mathcal{T}$ symmetry and nonlinearity in two-dimensional (2D) environments, where nonlinear localization and soliton formation can be observed. In contrast to typical dissipative solitons, we demonstrate a one-parameter family of soliton solutions that are capable of displaying attributes similar to those encountered in nonlinear conservative arrangements. For high optical powers, this new family of $\mathcal{P}\mathcal{T}$ solitons tends to collapse on a discrete network---thus giving rise to an amplified, self-accelerating structure.

Locations

  • Physical Review Letters - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Nonlinear waves in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="script">PT</mml:mi></mml:mrow></mml:math>-symmetric systems 2016 V. V. Konotop
Jianke Yang
Dmitry A. Zezyulin
+ PDF Chat Passive parity-time-symmetry-breaking transitions without exceptional points in dissipative photonic systems [Invited] 2018 Yogesh N. Joglekar
Andrew K. Harter
+ PDF Chat Topological gap solitons in a 1D non-Hermitian lattice 2021 N. Pernet
Philippe St-Jean
D. D. Solnyshkov
G. Malpuech
N. Carlon Zambon
Bastián Real
O. Jamadi
A. Lemaı̂tre
Martina Morassi
Loïc Le Gratiet
+ PDF Chat Solitons in nonlinear lattices 2011 Yaroslav V. Kartashov
Boris A. Malomed
Lluís Torner
+ PDF Chat Edge and bulk dissipative solitons in modulated PT-symmetric waveguide arrays 2019 Yaroslav V. Kartashov
Victor A. Vysloukh
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">PT</mml:mi></mml:math>-symmetry breaking in a necklace of coupled optical waveguides 2013 I. V. Barashenkov
Lucy Baker
N. V. Alexeeva
+ PDF Chat Dissipative Kerr solitons in a photonic dimer on both sides of exceptional point 2021 Kenichi Komagata
Aleksandr Tusnin
Johann Riemensberger
Mikhail Churaev
Hairun Guo
Alexey Tikan
Tobias J. Kippenberg
+ PDF Chat Hybrid patterns and solitonic frequency combs in non-Hermitian Kerr Cavities 2024 Salim Benadouda Ivars
Carles Milián
Muriel Botey
R. Herrero
Kęstutis Staliūnas
+ PDF Chat Solitons in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mi mathvariant="script">PT</mml:mi></mml:mrow></mml:mrow></mml:math>-symmetric nonlinear lattices 2011 F. Kh. Abdullaev
Yaroslav V. Kartashov
V. V. Konotop
Dmitry A. Zezyulin
+ Apodized photonic crystals: A non-dissipative system hosting multiple exceptional points 2023 Abhishek Mondal
Shailja Sharma
Ritwick Das
+ PDF Chat Gap solitons in parity–time symmetric moiré optical lattices 2022 Xiuye Liu
Jianhua Zeng
+ PDF Chat Parity-time symmetry in optical microcavity systems 2018 Jianming Wen
Xiaoshun Jiang
Liang Jiang
Min Xiao
+ Non-linear-enabled localization in driven-dissipative photonic lattices 2024 A. Muñoz de las Heras
A. Amo
Alejandro González-Tudela
+ PDF Chat Bound states in the continuum in a two-dimensional PT-symmetric system 2018 Yaroslav V. Kartashov
Carles Milián
V. V. Konotop
Lluís Torner
+ Gap solitons in parity-time symmetric moiré optical lattices 2022 Xiuye Liu
Jianhua Zeng
+ Discrete solitons and vortices on two-dimensional lattices of 𝒫𝒯 -symmetric couplers 2014 Zhaopin Chen
Jingfeng Liu
Shenhe Fu
Yongyao Li
Boris A. Malomed
+ PDF Chat Nonlinear Modes in Finite-Dimensional<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:math>-Symmetric Systems 2012 Dmitry A. Zezyulin
V. V. Konotop
+ Radiation families emitted by a discrete soliton in parity-time-symmetric waveguide arrays 2023 Anuj P. Lara
Ambaresh Sahoo
Samudra Roy
+ Demonstration of a two-dimensional PT-symmetric crystal: Bulk dynamics, topology, and edge states 2018 Mark Kremer
Tobias Biesenthal
Matthias Heinrich
Ronny Thomale
Alexander Szameit
+ PDF Chat Trapping of two-component matter-wave solitons by mismatched optical lattices 2008 Zhiwei Shi
Kody J. H. Law
P. G. Kevrekidis
Boris A. Malomed

Works That Cite This (15)

Action Title Year Authors
+ PDF Chat Theory of hydrodynamic phenomena in optical mesh lattices 2023 Hannah M. Price
Martin Wimmer
Monika Monika
U. Peschel
Iacopo Carusotto
+ PDF Chat Anomalous reflection at the interface of binary synthetic photonic lattices 2021 Zhiqing Zhang
Yanan Dai
Zhenjuan Liu
Haohao Wang
Zengrun Wen
Yuanmei Gao
Yanlong Shen
Xinyuan Qi
+ PDF Chat Superfluidity of Light and Its Breakdown in Optical Mesh Lattices 2021 Martin Wimmer
Monika Monika
Iacopo Carusotto
U. Peschel
Hannah M. Price
+ Formations and dynamics of two-dimensional spinning asymmetric quantum droplets controlled by a PT-symmetric potential 2023 Jin Song
Zhenya Yan
Boris A. Malomed
+ PDF Chat Edge-dependent anomalous topology in synthetic photonic lattices subject to discrete step walks 2024 Rabih El Sokhen
Álvaro Gómez-León
Albert F. Adiyatullin
Stéphane Randoux
Pierre Delplace
A. Amo
+ Non-Hermitian Anderson Transport 2020 Sebastian Weidemann
Mark Kremer
Stefano Longhi
Alexander Szameit
+ PDF Chat Nonlinear three-state quantum walks 2022 P. R. N. Falcão
J. P. Mendonça
A. R. C. Buarque
W. S. Dias
G. M. A. Almeida
M. L. Lyra
+ PDF Chat Deep-learning-empowered synthetic dimension dynamics: morphing of light into topological modes 2024 Shiqi Xia
Sihong Lei
Daohong Song
Luigi Di Lauro
Imtiaz Alamgir
Liqin Tang
Jingjun Xu
Roberto Morandotti
Hrvoje Buljan
Zhigang Chen
+ PDF Chat Riemann-Encircling Exceptional Points for Efficient Asymmetric Polarization-Locked Devices 2022 Aodong Li
Weijin Chen
Heng Wei
Guowei Lü
Andrea Alù
Cheng‐Wei Qiu
Lin Chen
+ PDF Chat Energy Band Attraction Effect in Non-Hermitian Systems 2020 Maopeng Wu
Ruiguang Peng
Jingquan Liu
Qian Zhao
Ji Zhou

Works Cited by This (31)

Action Title Year Authors
+ PDF Chat Parity-time-symmetric plasmonic metamaterials 2014 Hadiseh Alaeian
Jennifer A. Dionne
+ PDF Chat A note on the invariant periodic potential 2010 Bikashkali Midya
Barnana Roy
Rajkumar Roychoudhury
+ PDF Chat Parity–time-symmetric whispering-gallery microcavities 2014 Bo Peng
Şahin Kaya Özdemir
Fuchuan Lei
Faraz Monifi
Mariagiovanna Gianfreda
Gui‐Lu Long
Shanhui Fan
Franco Nori
Carl M. Bender
Lan Yang
+ PDF Chat Quantum Noise and Self-Sustained Radiation of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:math>-Symmetric Systems 2010 Henning Schomerus
+ PDF Chat Unidirectional nonlinear<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="script">PT</mml:mi></mml:mrow></mml:math>-symmetric optical structures 2010 Hamidreza Ramezani
Tsampikos Kottos
Ramy El‐Ganainy
Demetrios N. Christodoulides
+ PDF Chat Nonlinearly<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">PT</mml:mi></mml:math>-symmetric systems: Spontaneous symmetry breaking and transmission resonances 2011 Andrey E. Miroshnichenko
Boris A. Malomed
Yuri S. Kivshar
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="script">PT</mml:mi></mml:mrow></mml:math>-symmetric sinusoidal optical lattices at the symmetry-breaking threshold 2011 Eva-Maria Graefe
H. F. Jones
+ PDF Chat Unidirectional Invisibility Induced by<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:math>-Symmetric Periodic Structures 2011 Zin Lin
Hamidreza Ramezani
Toni Eichelkraut
Tsampikos Kottos
Hui Cao
Demetrios N. Christodoulides
+ PDF Chat Robust and fragile<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="script">PT</mml:mi></mml:mrow></mml:math>-symmetric phases in a tight-binding chain 2010 Yogesh N. Joglekar
Derek D. Scott
Mark Babbey
Avadh Saxena
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:math>-symmetry in honeycomb photonic lattices 2011 Alexander Szameit
Mikael C. Rechtsman
Omri Bahat-Treidel
Mordechai Segev