Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Sign In
Light
Dark
System
Approximate Spielman-Teng theorems for random matrices with heavy-tailed entries: a combinatorial view
Vishesh Jain
Type:
Preprint
Publication Date:
2019-04-25
Citations:
6
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Approximate Spielman-Teng theorems for the least singular value of random combinatorial matrices
2019
Vishesh Jain
+
Approximate Spielman-Teng theorems for the least singular value of random combinatorial matrices.
2019
Vishesh Jain
+
PDF
Chat
Approximate Spielman-Teng theorems for the least singular value of random combinatorial matrices
2021
Vishesh Jain
+
Inverse Littlewood-Offord theorems and the condition number of random discrete matrices
2005
Terence Tao
Van Vu
+
On the counting problem in inverse Littlewood--Offord theory
2019
Asaf Ferber
Vishesh Jain
Kyle Luh
Wojciech Samotij
+
On the counting problem in inverse Littlewood--Offord theory
2019
Asaf Ferber
Vishesh Jain
Kyle Luh
Wojciech Samotij
+
Smoothed analysis of the least singular value without inverse Littlewood-Offord theory.
2019
Vishesh Jain
+
Random Matrices: The circular Law
2007
Terence Tao
Van Vu
+
The strong circular law: a combinatorial view
2019
Vishesh Jain
+
The strong circular law: a combinatorial view
2019
Vishesh Jain
+
On the smallest singular value of symmetric random matrices
2020
Vishesh Jain
Ashwin Sah
Mehtaab Sawhney
+
On the smallest singular value of symmetric random matrices
2020
Vishesh Jain
Ashwin Sah
Mehtaab Sawhney
+
PDF
Chat
RANDOM MATRICES: THE CIRCULAR LAW
2008
Terence Tao
Van Vu
+
Quantitative invertibility of random matrices: a combinatorial perspective
2019
Vishesh Jain
+
PDF
Chat
On the counting problem in inverse Littlewood–Offord theory
2020
Asaf Ferber
Vishesh Jain
Kyle Luh
Wojciech Samotij
+
The Littlewood-Offord Problem and invertibility of random matrices
2007
Mark Rudelson
Roman Vershynin
+
The Littlewood-Offord Problem and invertibility of random matrices
2007
Mark Rudelson
Roman Vershynin
+
The smallest singular value of random combinatorial matrices
2020
Tuan Tran
+
PDF
Chat
The strong circular law: A combinatorial view
2020
Vishesh Jain
+
PDF
Chat
The Littlewood–Offord problem and invertibility of random matrices
2008
Mark Rudelson
Roman Vershynin
Works That Cite This (6)
Action
Title
Year
Authors
+
PDF
Chat
Resilience of the rank of random matrices
2020
Asaf Ferber
Kyle Luh
Gweneth McKinley
+
On the counting problem in inverse Littlewood--Offord theory
2019
Asaf Ferber
Vishesh Jain
Kyle Luh
Wojciech Samotij
+
PDF
Chat
SINGULARITY OF RANDOM SYMMETRIC MATRICES—A COMBINATORIAL APPROACH TO IMPROVED BOUNDS
2019
Asaf Ferber
Vishesh Jain
+
Approximate Spielman-Teng theorems for the least singular value of random combinatorial matrices.
2019
Vishesh Jain
+
Quantitative invertibility of random matrices: a combinatorial perspective
2019
Vishesh Jain
+
Eigenvectors and controllability of non-Hermitian random matrices and directed graphs
2020
Kyle Luh
Sean O’Rourke
Works Cited by This (20)
Action
Title
Year
Authors
+
PDF
Chat
No-gaps delocalization for general random matrices
2016
Mark Rudelson
Roman Vershynin
+
PDF
Chat
Small Ball Probability, Inverse Theorems, and Applications
2013
Hoi H. Nguyen
Van H. Vu
+
PDF
Chat
Inverse Littlewood–Offord theorems and the condition number of random discrete matrices
2009
Terence Tao
Van H. Vu
+
Smallest singular value of random matrices and geometry of random polytopes
2004
A.E. Litvak
Alain Pajor
Mark Rudelson
Nicole Tomczak-Jaegermann
+
PDF
Chat
RANDOM MATRICES: THE CIRCULAR LAW
2008
Terence Tao
Van Vu
+
PDF
Chat
Random matrices: Universality of ESDs and the circular law
2010
Terence Tao
Van Vu
Manjunath Krishnapur
+
On the Kolmogorov-Rogozin inequality for the concentration function
1966
Carl-Gustav Esseen
+
Introduction to the non-asymptotic analysis of random matrices
2010
Roman Vershynin
+
PDF
Chat
Smallest singular value of a random rectangular matrix
2009
Mark Rudelson
Roman Vershynin
+
The circular law for random regular digraphs
2017
Nicholas A. Cook