Almost simple groups with no product of two primes dividing three character degrees

Type: Article

Publication Date: 2019-04-06

Citations: 0

DOI: https://doi.org/10.1515/jgth-2018-0188

Abstract

Abstract Let <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>Irr</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:math> {\operatorname{Irr}(G)} denote the set of complex irreducible characters of a finite group G , and let <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>cd</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:math> {\operatorname{cd}(G)} be the set of degrees of the members of <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>Irr</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:math> {\operatorname{Irr}(G)} . For positive integers k and l , we say that the finite group G has the property <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msubsup> <m:mi mathvariant="script">𝒫</m:mi> <m:mi>k</m:mi> <m:mi>l</m:mi> </m:msubsup> </m:math> {\mathcal{P}^{l}_{k}} if, for any distinct degrees <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:msub> <m:mi>a</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>a</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant="normal">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>a</m:mi> <m:mi>k</m:mi> </m:msub> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:mi>cd</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {a_{1},a_{2},\dots,a_{k}\in\operatorname{cd}(G)} , the total number of (not necessarily different) prime divisors of the greatest common divisor <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>gcd</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:msub> <m:mi>a</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>a</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant="normal">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>a</m:mi> <m:mi>k</m:mi> </m:msub> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:math> {\gcd(a_{1},a_{2},\dots,a_{k})} is at most <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>l</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> {l-1} . In this paper, we classify all finite almost simple groups satisfying the property <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msubsup> <m:mi mathvariant="script">𝒫</m:mi> <m:mn>3</m:mn> <m:mn>2</m:mn> </m:msubsup> </m:math> {\mathcal{P}_{3}^{2}} . As a consequence of our classification, we show that if G is an almost simple group satisfying <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msubsup> <m:mi mathvariant="script">𝒫</m:mi> <m:mn>3</m:mn> <m:mn>2</m:mn> </m:msubsup> </m:math> {\mathcal{P}_{3}^{2}} , then <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:mo fence="true" stretchy="false">|</m:mo> <m:mrow> <m:mi>cd</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> <m:mo fence="true" stretchy="false">|</m:mo> </m:mrow> <m:mo>⩽</m:mo> <m:mn>8</m:mn> </m:mrow> </m:math> {\lvert\operatorname{cd}(G)\rvert\leqslant 8} .

Locations

  • Journal of Group Theory - View - PDF

Similar Works

Action Title Year Authors
+ Groups with two extreme character degrees and their normal subgroups 2001 Gustavo A. Fernández‐Alcober
Alexander Moretó
+ Finite groups with character degrees of two distinct primes 2006 Shengan Chen
Yun Fan
Shum Kar-Ping
+ Finite groups with almost distinct character degrees 2006 David Chillag
Marcel Herzog
+ Finite Groups with Character Degrees of Two Distinct Primes 2006 Chen
Sheng'an
Fan Fan
Yun
Shum
Karpin
+ PDF Chat 𝑝-groups with exactly four codegrees 2020 Sarah Croome
Mark L. Lewis
+ PDF Chat Feit numbers and p′${p^{\prime}}$-degree characters 2016 Carolina Vallejo
+ PDF Chat Prime divisors of irreducible character degrees 2015 Hung P. Tong-Viet
+ PDF Chat Primitive rank 3 groups with a prime subdegree 1965 D. G. Higman
+ PDF Chat Groups having at most three irreducible character degrees 1969 I. M. Isaacs
+ PDF Chat Groups Having at Most Three Irreducible Character Degrees 1969 I. M. Isaacs
+ Groups Having Three Complex Irreducible Character Degrees 1995 Thomas Noritzsch
+ PDF Chat On almost <i>p</i>-rational characters of p ′ p^{\prime} -degree 2022 Hung Ngoc Nguyen
Gunter Malle
Attila Maróti
+ Groups with few 𝑝’-character degrees in the principal block 2020 Eugenio Giannelli
Noelia Rizo
Benjamin Sambale
A. A. Schaeffer Fry
+ Finite groups with an almost large irreducible character 2019 A.A. Nikitina
+ Characterization of two finite simple groups 1976 Robert Markot
+ Groups with few characters of small degrees 1999 Yakov Berkovich
+ PDF Chat Finite skew braces with isomorphic non-abelian characteristically simple additive and circle groups 2021 Cindy Tsang
+ PDF Chat A curiosity concerning the degrees of the characters of a finite group 1977 K. L. Fields
+ A characterization of finite groups having a single Galois conjugacy class of certain irreducible characters 2023 Yu Zeng
Dongfang Yang
+ PDF Chat Irreducible characters of even degree and normal Sylow 2-subgroups 2016 Hung Ngoc Nguyen
Pham Huu Tiep

Works That Cite This (0)

Action Title Year Authors