Multinomial Random Forests: Fill the Gap between Theoretical Consistency and Empirical Soundness.

Type: Preprint

Publication Date: 2019-03-10

Citations: 1

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Data-driven multinomial random forest: A new random forest variant with strong consistency 2022 Junhao Chen
+ PDF Chat Heterogeneous Random Forest 2024 Y. Kim
S. Kim
Hyunjoong Kim
+ Consistency of random forests 2015 Erwan Scornet
Gérard Biau
Jean‐Philippe Vert
+ Understanding Random Forests: From Theory to Practice 2014 Gilles Louppe
+ Understanding Random Forests: From Theory to Practice 2014 Gilles Louppe
+ Data-driven multinomial random forest 2023 Junhao Chen
Xueli wang
+ Two-stage Best-scored Random Forest for Large-scale Regression 2019 Hanyuan Hang
Yingyi Chen
Johan A. K. Suykens
+ PDF Chat A survey and taxonomy of methods interpreting random forest models 2024 Maissae Haddouchi
Abdelaziz Berrado
+ Improving the Accuracy and Interpretability of Random Forests via Forest Pruning 2024 Albert Dorador
+ Optimal Weighted Random Forests 2023 Xinyu Chen
Dalei Yu
Xinyu Zhang
+ Random Forest and Ensemble Methods 2020 George Stavropoulos
Robert van Voorstenbosch
Frederik‐Jan van Schooten
Agnieszka Smolinska
+ Best-scored Random Forest Classification 2019 Hanyuan Hang
Xiaoyu Liu
Ingo Steinwart
+ Machine Learning Benchmarks and Random Forest Regression 2004 Mark R. Segal
+ PDF Chat Exogenous Randomness Empowering Random Forests 2024 Tianxing Mei
Yingying Fan
Jinchi Lv
+ Generalizing Random Forests Principles to other Methods: Random MultiNomial Logit, Random Naive Bayes, … 2008 Anita Prinzie
Dirk Van den Poel
+ PDF Chat Analysis of a Random Forests Model 2010 Gérard Biau
+ Hierarchical Shrinkage: improving the accuracy and interpretability of tree-based methods 2022 Abhineet Agarwal
Yan Shuo Tan
Omer Ronen
Chandan Singh
Bin Yu
+ Randomer Forests 2015 Tyler M. Tomita
Mauro Maggioni
Joshua T Vogelstein
+ A Numerical Transform of Random Forest Regressors corrects Systematically-Biased Predictions. 2020 Shipra Malhotra
John Karanicolas
+ Interpretable Machines: Constructing Valid Prediction Intervals with Random Forests. 2021 Burim Ramosaj

Works That Cite This (0)

Action Title Year Authors