Deep ReLU networks overcome the curse of dimensionality for bandlimited functions

Type: Preprint

Publication Date: 2019-03-02

Citations: 39

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ PDF Chat Deep ReLU Networks Overcome the Curse of Dimensionality for Generalized Bandlimited Functions 2021 Hadrien Montanelli
Haizhao Yang
Qiang Du
+ Error bounds for deep ReLU networks using the Kolmogorov--Arnold superposition theorem 2019 Hadrien Montanelli
Haizhao Yang
+ The necessity of depth for artificial neural networks to approximate certain classes of smooth and bounded functions without the curse of dimensionality 2023 Lukas Gonon
Robin Graeber
Arnulf Jentzen
+ Deep neural network approximation of composite functions without the curse of dimensionality 2023 Adrian Riekert
+ Deep ReLU networks lessen the curse of dimensionality 2017 Hadrien Montanelli
Qiang Du
+ Approximation Power of Deep Neural Networks: an explanatory mathematical survey 2022 Mohammad Motamed
+ PDF Chat New Error Bounds for Deep ReLU Networks Using Sparse Grids 2019 Hadrien Montanelli
Qiang Du
+ Deep neural network approximation theory for high-dimensional functions 2021 Pierfrancesco Beneventano
Patrick Cheridito
Robin Graeber
Arnulf Jentzen
Benno Kuckuck
+ Optimal Approximation Complexity of High-Dimensional Functions with Neural Networks 2023 Vincent P. H. Goverse
Jad Hamdan
Jared Tanner
+ PDF Chat Deep vs. shallow networks: An approximation theory perspective 2016 H. N. Mhaskar
Tomaso Poggio
+ Deep Network Approximation for Smooth Functions 2020 Jianfeng Lu
Zuowei Shen
Haizhao Yang
Zhang Shi-jun
+ The universal approximation power of finite-width deep ReLU networks 2018 Dmytro Perekrestenko
Philipp Grohs
Dennis Elbrächter
Helmut Bölcskei
+ PDF Chat Approximation Error and Complexity Bounds for ReLU Networks on Low-Regular Function Spaces 2024 Owen Davis
Gianluca Geraci
Mohammad Motamed
+ Exploring the Approximation Capabilities of Multiplicative Neural Networks for Smooth Functions 2023 Ido Ben-Shaul
Tomer Galanti
Shai Dekel
+ Deep vs. shallow networks : An approximation theory perspective 2016 H. N. Mhaskar
Tomaso Poggio
+ Deep vs. shallow networks : An approximation theory perspective 2016 H. N. Mhaskar
Tomaso Poggio
+ New error bounds for deep networks using sparse grids 2017 Hadrien Montanelli
Qiang Du
+ PDF Chat Expressivity of Deep Neural Networks 2022 Ingo GĂĽhring
Mones Raslan
Gitta Kutyniok
+ Deep Learning in High Dimension: Neural Network Approximation of Analytic Functions in $L^2(\mathbb{R}^d,\gamma_d)$ 2021 Christoph Schwab
Jakob Zech
+ PDF Chat Deep Learning in High Dimension: Neural Network Approximation of Analytic Functions in $L^2(\mathbb{R}^d,\gamma_d)$ 2021 Christoph Schwab
Jakob Zech