Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Deep ReLU networks overcome the curse of dimensionality for bandlimited functions
Hadrien Montanelli
,
Haizhao Yang
,
Qiang Du
Type:
Preprint
Publication Date:
2019-03-02
Citations:
39
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
PDF
Chat
Deep ReLU Networks Overcome the Curse of Dimensionality for Generalized Bandlimited Functions
2021
Hadrien Montanelli
Haizhao Yang
Qiang Du
+
Error bounds for deep ReLU networks using the Kolmogorov--Arnold superposition theorem
2019
Hadrien Montanelli
Haizhao Yang
+
The necessity of depth for artificial neural networks to approximate certain classes of smooth and bounded functions without the curse of dimensionality
2023
Lukas Gonon
Robin Graeber
Arnulf Jentzen
+
Deep neural network approximation of composite functions without the curse of dimensionality
2023
Adrian Riekert
+
Deep ReLU networks lessen the curse of dimensionality
2017
Hadrien Montanelli
Qiang Du
+
Approximation Power of Deep Neural Networks: an explanatory mathematical survey
2022
Mohammad Motamed
+
PDF
Chat
New Error Bounds for Deep ReLU Networks Using Sparse Grids
2019
Hadrien Montanelli
Qiang Du
+
Deep neural network approximation theory for high-dimensional functions
2021
Pierfrancesco Beneventano
Patrick Cheridito
Robin Graeber
Arnulf Jentzen
Benno Kuckuck
+
Optimal Approximation Complexity of High-Dimensional Functions with Neural Networks
2023
Vincent P. H. Goverse
Jad Hamdan
Jared Tanner
+
PDF
Chat
Deep vs. shallow networks: An approximation theory perspective
2016
H. N. Mhaskar
Tomaso Poggio
+
Deep Network Approximation for Smooth Functions
2020
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Zhang Shi-jun
+
The universal approximation power of finite-width deep ReLU networks
2018
Dmytro Perekrestenko
Philipp Grohs
Dennis Elbrächter
Helmut Bölcskei
+
PDF
Chat
Approximation Error and Complexity Bounds for ReLU Networks on Low-Regular Function Spaces
2024
Owen Davis
Gianluca Geraci
Mohammad Motamed
+
Exploring the Approximation Capabilities of Multiplicative Neural Networks for Smooth Functions
2023
Ido Ben-Shaul
Tomer Galanti
Shai Dekel
+
Deep vs. shallow networks : An approximation theory perspective
2016
H. N. Mhaskar
Tomaso Poggio
+
Deep vs. shallow networks : An approximation theory perspective
2016
H. N. Mhaskar
Tomaso Poggio
+
New error bounds for deep networks using sparse grids
2017
Hadrien Montanelli
Qiang Du
+
PDF
Chat
Expressivity of Deep Neural Networks
2022
Ingo GĂĽhring
Mones Raslan
Gitta Kutyniok
+
Deep Learning in High Dimension: Neural Network Approximation of Analytic Functions in $L^2(\mathbb{R}^d,\gamma_d)$
2021
Christoph Schwab
Jakob Zech
+
PDF
Chat
Deep Learning in High Dimension: Neural Network Approximation of Analytic Functions in $L^2(\mathbb{R}^d,\gamma_d)$
2021
Christoph Schwab
Jakob Zech
Works That Cite This (35)
Action
Title
Year
Authors
+
PDF
Chat
A deep network construction that adapts to intrinsic dimensionality beyond the domain
2021
Alexander Cloninger
Timo Klock
+
PDF
Chat
Two-layer neural networks for partial differential equations: optimization and generalization theory
2024
Tao Luo
Haizhao Yang
+
Two-Layer Neural Networks for Partial Differential Equations: Optimization and Generalization Theory
2020
Tao Luo
Haizhao Yang
+
PDF
Chat
Deep Network Approximation Characterized by Number of Neurons
2020
Zuowei Shen
Haizhao Yang
Zhang Shi-jun
+
Deep Network Approximation for Smooth Functions
2020
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Zhang Shi-jun
+
The gap between theory and practice in function approximation with deep neural networks
2020
Ben Adcock
Nick Dexter
+
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
2020
Ben Adcock
Simone Brugiapaglia
Nick Dexter
Sebastián Moraga
+
PDF
Chat
Neural network approximation: Three hidden layers are enough
2021
Zuowei Shen
Haizhao Yang
Zhang Shi-jun
+
Deep Network Approximation With Accuracy Independent of Number of Neurons
2021
Zuowei Shen
Haizhao Yang
Zhang Shi-jun
+
ReLU Network Approximation in Terms of Intrinsic Parameters
2021
Zuowei Shen
Haizhao Yang
Zhang Shi-jun
Works Cited by This (13)
Action
Title
Year
Authors
+
Optimal nonlinear approximation
1989
Ronald DeVore
Ralph Howard
Charles A. Micchelli
+
PDF
Chat
The approximate solution of integral equations
1935
E. N. Oberg
+
Approximation by superposition of sigmoidal and radial basis functions
1992
H. N. Mhaskar
Charles A. Micchelli
+
Provable approximation properties for deep neural networks
2016
Uri Shaham
Alexander Cloninger
Ronald R. Coifman
+
PDF
Chat
Error bounds for approximations with deep ReLU networks
2017
Dmitry Yarotsky
+
Approximation Theory and Approximation Practice
2013
Lloyd N. Trefethen
+
PDF
Chat
New Error Bounds for Deep ReLU Networks Using Sparse Grids
2019
Hadrien Montanelli
Qiang Du
+
Why Deep Neural Networks for Function Approximation
2016
Shiyu Liang
R. Srikant
+
On the Expressive Power of Deep Learning: A Tensor Analysis
2015
Nadav Cohen
Or Sharir
Amnon Shashua
+
Benefits of depth in neural networks
2016
Matus Telgarsky