Schubert calculus and puzzles

Type: Article

Publication Date: 2018-10-03

Citations: 3

DOI: https://doi.org/10.2969/aspm/07110185

Abstract

<!-- *** Custom HTML *** --> These are notes for four lectures given at the Osaka summer school on Schubert calculus in 2012, presenting the geometry from the unpublished arXiv:1008.4302 giving an extension of the puzzle rule for Schubert calculus to equivariant $K$-theory, while eliding some of the combinatorial detail. In particular, §3 includes background material on equivariant cohomology and $K$-theory. Since that school, I have extended the results to arbitrary interval positroid varieties (not just those arising in Vakil's geometric Littlewood-Richardson rule), in the preprint [Kn2].

Locations

  • Advanced studies in pure mathematics - View
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Equivariant Schubert calculus and geometric Satake 2024 Antoine Labelle
+ Variations on a Theme of Schubert Calculus 2018 Maria Gillespie
+ PDF Chat Variations on a Theme of Schubert Calculus 2019 Maria Gillespie
+ K-theoretic Schubert calculus and applications 2016 Oliver Pechenik
+ PDF Chat k-Schur Functions and Affine Schubert Calculus 2014 Thomas Lam
Luc Lapointe
Jennifer Morse
Anne Schilling
Mark Shimozono
Mike Zabrocki
+ Introduction to "Schubert varieties, equivariant cohomology and characteristic classes 2018 Jarosław Buczyński
Mateusz Michałek
Elisa Postinghel
+ Puzzles, positroid varieties, and equivariant K-theory of Grassmannians 2010 Allen Knutson
+ Schubert calculus, seen from torus equivariant topology 2010 Shizuo Kaji
+ The Schubert calculus 1979 David Paul Higham
+ A COMBINATORIAL THEORY OF AFFINE SCHUBERT CALCULUS 2009 Luc Lapointe
+ PDF Chat Equivariant Cohomology, Schubert Calculus, and Edge Labeled Tableaux 2022 Colleen Robichaux
Harshit Yadav
Alexander Yong
+ k-Schur Functions and Affine Schubert Calculus 2014 Thomas Lam
Luc Lapointe
Jennifer Morse
Anne Schilling
Mark Shimozono
Mike Zabrocki
+ PDF Chat Lectures on equivariant Schubert polynomials 2018 Takeshi Ikeda
+ Schubert calculus and shifting of interval positroid varieties 2014 Allen Knutson
+ Schubert Calculus — Osaka 2012 2016
+ Schubert Calculus according to Schubert 2006 Felice Ronga
+ PDF Chat Interval positroid varieties and a deformation of the ring of symmetric functions 2014 Allen Knutson
Mathias Lederer
+ 書評 S.Billey and V.Lakshmibai: Singular Loci of Schubert Varieties 2002 俊昭 前野
+ PDF Chat Commutative Properties of Schubert Puzzles with Convex Polygonal Boundary Shapes 2024 Portia Anderson
+ PDF Chat Two Murnaghan-Nakayama Rules in Schubert Calculus 2018 Andrew Morrison
Frank Sottile