Semi-Supervised Multitask Learning on Multispectral Satellite Images Using Wasserstein Generative Adversarial Networks (GANs) for Predicting Poverty

Type: Preprint

Publication Date: 2019-02-13

Citations: 9

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Semi-Supervised Multitask Learning on Multispectral Satellite Images Using Wasserstein Generative Adversarial Networks (GANs) for Predicting Poverty 2019 Anthony Perez
Swetava Ganguli
Stefano Ermon
George Azzari
Marshall Burke
David B. Lobell
+ Poverty Prediction with Public Landsat 7 Satellite Imagery and Machine Learning 2017 Anthony Perez
Christopher Yeh
George Azzari
Marshall Burke
David B. Lobell
Stefano Ermon
+ Predicting Poverty through Machine Learning and Satellite Images 2021 Yan Xiao
+ Predicting Poverty Level from Satellite Imagery using Deep Neural Networks 2021 Varun Chitturi
Zaid Nabulsi
+ Predicting Poverty Level from Satellite Imagery using Deep Neural Networks 2021 Varun Chitturi
Zaid Nabulsi
+ PDF Chat KidSat: satellite imagery to map childhood poverty dataset and benchmark 2024 Makkunda Sharma
Fan Yang
Duy-Nhat Vo
Esra SĂŒel
Swapnil Mishra
Samir Bhatt
Oliver Fiala
William E. Rudgard
Seth Flaxman
+ Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping 2015 Sang Michael Xie
Neal Jean
Marshall Burke
David B. Lobell
Stefano Ermon
+ PDF Chat Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping 2016 Sang Michael Xie
Neal Jean
Marshall Burke
David B. Lobell
Stefano Ermon
+ Understanding economic development in rural Africa using satellite imagery, building footprints and deep models 2022 Amna Elmustafa
Erik Rozi
Yutong He
Gengchen Mai
Stefano Ermon
Marshall Burke
David B. Lobell
+ PDF Chat A review of machine learning and satellite imagery for poverty prediction: Implications for development research and applications 2023 Ola Hall
Francis Dompae
Ibrahim Wahab
Fred Mawunyo Dzanku
+ PDF Chat Gated-Attention Feature-Fusion Based Framework for Poverty Prediction 2024 Muhammad Umer Ramzan
Wahab Khaddim
Muhammad Ehsan Rana
Ihsan Ali
Maqbool Ali
Foyzul Hassan
Fatima Mehmood
+ Human bias and CNNs’ superior insights in satellite based poverty mapping 2024 Hamid Sarmadi
Ibrahim Wahab
Ola Hall
Thorsteinn Rögnvaldsson
Mattias Ohlsson
+ Poverty Mapping Using Convolutional Neural Networks Trained on High and Medium Resolution Satellite Images, With an Application in Mexico 2017 Boris Babenko
Jonathan Hersh
David Newhouse
Anusha Ramakrishnan
Tom Swartz
+ Interpretable Poverty Mapping using Social Media Data, Satellite Images, and Geospatial Information 2020 Chiara Ledesma
Oshean Lee Garonita
Lorenzo Jaime Flores
Isabelle Tingzon
Danielle Dalisay
+ Interpretable Poverty Mapping using Social Media Data, Satellite Images, and Geospatial Information 2020 Chiara Ledesma
Oshean Lee Garonita
Lorenzo Jaime Flores
Isabelle Tingzon
Danielle Dalisay
+ Beyond Human Bias: Learning from CNNs’ Superior Insights in Satellite-Based Poverty Mapping 2024 Hamid Sarmadi
Ibrahim Wahab
Ola Hall
Thorsteinn Rögnvaldsson
Mattias Ohlsson
+ Predicting Food Security Outcomes Using Convolutional Neural Networks (CNNs) for Satellite Tasking 2019 Swetava Ganguli
Jared Dunnmon
Darren Hau
+ Advancing COVID-19 poverty estimation with satellite imagery-based deep learning techniques: a systematic review 2024 Shruti Mishra
Sandeep Kumar Satapathy
Sung-Bae Cho
Sachi Nandan Mohanty
Sweeti Sah
Shweta Sharma
+ PDF Chat A Generalizable and Accessible Approach to Machine Learning with Global Satellite Imagery 2020 Esther Rolf
J. Proctor
Tamma Carleton
Ian Bolliger
Vaishaal Shankar
Miyabi Ishihara
Benjamin Recht
Solomon Hsiang
+ PDF Chat High-Resolution Rural Poverty Mapping in Pakistan With Ensemble Deep Learning 2022 Felix Agyemang
Rashid Memon
Levi John Wolf
Sean Fox