Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Sign In
Light
Dark
System
Roots of random functions: A general condition for local universality
Hoi H. Nguyen
,
Van Vu
Type:
Preprint
Publication Date:
2017-11-09
Citations:
17
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Roots of random functions: A framework for local universality
2017
Hoi H. Nguyen
Van Vu
+
Roots of random functions: A framework for local universality
2017
Oanh Kieu Nguyen
Van Vu
+
Roots of random functions
2017
Hoi H. Nguyen
Van Vu
+
PDF
Chat
Roots of random functions: A framework for local universality
2022
Oanh Kieu Nguyen
Van Vu
+
Roots of random polynomials with arbitrary coefficients
2015
Yen Do
Hoi H. Nguyen
Van Vu
+
Local universality for real roots of random trigonometric polynomials
2016
Alexander Iksanov
Zakhar Kabluchko
Alexander Marynych
+
Local universality for real roots of random trigonometric polynomials
2016
Alexander Iksanov
Zakhar Kabluchko
Alexander Marynych
+
Random orthonormal polynomials: local universality and expected number of real roots
2020
Yen Do
Oanh Kieu Nguyen
Van Vu
+
PDF
Chat
Roots of random polynomials with coefficients of polynomial growth
2018
Yen Do
Hoi H. Nguyen
Van Vu
+
Roots of random polynomials with coefficients having polynomial growth
2015
Yen Do
Hoi H. Nguyen
Van Vu
+
PDF
Chat
Non universality for the variance of the number of real roots of random trigonometric polynomials
2018
Vlad Bally
Lucia Caramellino
Guillaume Poly
+
Random trigonometric polynomials: universality and non-universality of the variance for the number of real roots
2019
Yen Do
Hoi H. Nguyen
Oanh Nguyen
+
Non universality for the variance of the number of real roots of random trigonometric polynomials
2017
Vlad Bally
Lucia Caramellino
Guillaume Poly
+
Non universality for the variance of the number of real roots of random trigonometric polynomials
2017
Vlad Bally
Lucia Caramellino
Guillaume Poly
+
Real roots of random polynomials with coefficients of polynomial growth and non-zero means: a comparison principle and applications
2019
Yen Q.
+
Local universality of zeroes of random polynomials
2013
Terence Tao
Van Vu
+
Real roots of random polynomials with coefficients of polynomial growth: a comparison principle and applications
2019
Yen Do
+
PDF
Chat
Real roots of random polynomials with coefficients of polynomial growth: a comparison principle and applications
2021
Yen Q.
+
Local universality for real roots of random trigonometric polynomials
2016
Alexander Iksanov
Zakhar Kabluchko
Alexander Marynych
+
PDF
Chat
Random polynomials: Central limit theorems for the real roots
2021
Hoi H. Nguyen
Van Vu
Works That Cite This (18)
Action
Title
Year
Authors
+
Exponential concentration for the number of roots of random trigonometric polynomials
2019
Hoi H. Nguyen
Ofer Zeitouni
+
Random orthonormal polynomials: Local universality and expected number of real roots
2023
Yen Do
Hoi H. Nguyen
Van Vu
+
PDF
Chat
Real roots of random polynomials with coefficients of polynomial growth: a comparison principle and applications
2021
Yen Q.
+
PDF
Chat
Random Eigenfunctions on Flat Tori: Universality for the Number of Intersections
2018
Mei-Chu Chang
Hoi H. Nguyen
Hoi H. Nguyen
Van Vu
+
The number of real zeros of elliptic polynomials
2024
Nguyen Du Vi Nhan
+
On the zeros of non-analytic random periodic signals
2019
Jürgen Angst
Guillaume Poly
+
Universality of the minimum modulus for random trigonometric polynomials
2021
Nicholas A. Cook
Hoi H. Nguyen
+
Random polynomials: central limit theorems for the real roots
2019
Hoi H. Nguyen
Van Vu
+
PDF
Chat
On the expected number of real roots of random polynomials arising from evolutionary game theory
2022
Van Hao Can
Manh Hong Duong
Viet Pham
+
PDF
Chat
Fluctuations in Salem–Zygmund almost sure Central Limit Theorem
2023
Jürgen Angst
Guillaume Poly
Works Cited by This (35)
Action
Title
Year
Authors
+
PDF
Chat
Small Ball Probability, Inverse Theorems, and Applications
2013
Hoi H. Nguyen
Van H. Vu
+
Real Analysis: Modern Techniques and Their Applications
1984
Gerald B. Folland
+
Real and Complex Analysis.
1987
G. A. Garreau
Walter Rudin
+
From Random Polynomials to Symplectic Geometry
2000
Steve Zelditch
+
None
2004
Pavel Bleher
Xiaojun Di
+
On the Number of Real Roots of a Random Algebraic Equation
1938
J. E. Littlewood
A. C. Offord
+
PDF
Chat
Zeros of polynomials with random coefficients
2014
Igor E. Pritsker
Aaron Yeager
+
The Number of Real Zeros of a Random Trigonometric Polynomial
1966
Jonathan Dunnage
+
The average number of real zeros of a random trigonometric polynomial
1968
Minaketan Das
+
On the Number of Real Roots of a Random Algebraic Equation
1956
Paul Erdős
A. C. Offord