Super-Convergent Implicit-Explicit Peer Methods with Variable Step Sizes

Type: Preprint

Publication Date: 2019-02-04

Citations: 1

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Super-Convergent Implicit-Explicit Peer Methods with Variable Step Sizes 2019 Moritz Schneider
Jens Lang
Rüdiger Weiner
+ PDF Chat Super-convergent implicit–explicit Peer methods with variable step sizes 2019 Moritz Schneider
Jens Lang
Rüdiger Weiner
+ PDF Chat Extrapolation-based super-convergent implicit-explicit Peer methods with A-stable implicit part 2018 Moritz Schneider
Jens Lang
Willem Hundsdorfer
+ PDF Chat Extrapolation-based implicit–explicit Peer methods with optimised stability regions 2017 Jens Lang
Willem Hundsdorfer
+ A class of implicit peer methods for stiff systems 2016 Behnam Soleimani
Rüdiger Weiner
+ Well-Balanced and Asymptotic Preserving IMEX-Peer Methods 2020 Moritz Schneider
Jens Lang
+ PDF Chat Well-Balanced and Asymptotic Preserving IMEX-Peer Methods 2020 Moritz Schneider
Jens Lang
+ PDF Chat Explicit two-step peer methods with reused stages 2023 M. Calvo
J.I. Montijano
L. Rández
A. Saenz-de-la-Torre
+ Variable-Stepsize Interpolating Explicit Parallel Peer Methods with Inherent Global Error Control 2010 Gennady Yu. Kulikov
R. Weiner
+ Jacobian-Dependent Two-Stage Peer Method for Ordinary Differential Equations 2021 Dajana Conte
Giovanni Pagano
Beatrice Paternoster
+ Optimally zero stable explicit peer methods with variable nodes 2017 Marcel Klinge
Rüdiger Weiner
Helmut Podhaisky
+ A Singly Diagonally Implicit Two-Step Peer Triple with Global Error Control for Stiff Ordinary Differential Equations 2015 Gennady Yu. Kulikov
R. Weiner
+ Global error control in implicit parallel peer methods 2010 Gennady Yu. Kulikov
R. Weiner
+ Explicit multi-step peer methods for special second-order differential equations 2008 Stefan Jebens
Rüdiger Weiner
Helmut Podhaisky
Bernhard A. Schmitt
+ PDF Chat On the derivation of explicit two-step peer methods 2010 M. Calvo
J.I. Montijano
L. Rández
Maarten Van Daele
+ Time-accurate and highly-stable explicit peer methods for stiff differential problems 2023 Dajana Conte
Giovanni Pagano
Beatrice Paternoster
+ Explicit peer methods with variable nodes 2015 Marcel Klinge
Martin Luther
R. Weiner
+ New third- and fourth-order singly diagonally implicit two-step peer triples with local and global error controls for solving stiff ordinary differential equations 2016 R. Weiner
Gennady Yu. Kulikov
Steffen Beck
J�rgen Bruder
+ PDF Chat Two-step peer methods with equation-dependent coefficients 2022 Dajana Conte
Giovanni Pagano
Beatrice Paternoster
+ Two-step peer methods with continuous output 2013 Bernhard A. Schmitt
Rüdiger Weiner
Steffen Beck