Cayley--Klein Poisson Homogeneous Spaces

Type: Article

Publication Date: 2019-01-01

Citations: 2

DOI: https://doi.org/10.7546/giq-20-2019-161-183

Abstract

The nine two-dimensional Cayley-Klein geometries are firstly reviewed by following a graded contraction approach. Each geometry is considered as a set of three symmetrical homogeneous spaces (of points and two kinds of lines), in such a manner that the graded contraction parameters determine their curvature and signature. Secondly, new Poisson homogeneous spaces are constructed by making use of certain Poisson-Lie structures on the corresponding motion groups. Therefore, the quantization of these spaces provides noncommutative analogues of the Cayley-Klein geometries. The kinematical interpretation for the semi-Riemannian and pseudo-Riemannian Cayley-Klein geometries is emphasized, since they are just Newtonian and Lorentzian spacetimes of constant curvature.

Locations

  • Geometry Integrability and Quantization - View
  • arXiv (Cornell University) - View - PDF
  • University of Valladolid Documentary Repository (University of Valladolid) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Cayley–Klein Lie Bialgebras: Noncommutative Spaces, Drinfel’d Doubles and Kinematical Applications 2021 Iván Gutiérrez-Sagredo
Francisco J. Herranz
+ Quantum structure of the motion groups of the two-dimensional Cayley-Klein geometries 1993 Ángel Ballesteros
Francisco J. Herranz
M. A. del Olmo
Mariano Santander
+ Homogeneous phase spaces: the Cayley-Klein framework 1997 Francisco J. Herranz
Mariano Santander
+ Homogeneous phase spaces: the Cayley-Klein framework 1997 Francisco J. Herranz
Mariano Santander
+ PDF Chat Contractions, Deformations and Curvature 2007 Ángel Ballesteros
Francisco J. Herranz
O. Ragnisco
Mariano Santander
+ Geometry of Membrane Sigma Models 2015 Jan Vysoký
+ Geometry of Membrane Sigma Models 2015 Jan Vysoký
+ Lie Groupoids 2023 Henrique Bursztyn
Matías del Hoyo
+ Lorentzian Poisson homogeneous spaces, quantum groups and noncommutative spacetimes 2019 Iván Gutiérrez Sagredo
+ PDF Chat Noncommutative geometries : an overview 2008 Claudio Perini
+ PDF Chat Conformal compactification and cycle-preserving symmetries of spacetimes 2001 Francisco J. Herranz
Mariano Santander
+ The κ-Newtonian and κ-Carrollian algebras and their noncommutative spacetimes 2020 Ángel Ballesteros
Giulia Gubitosi
Iván Gutiérrez-Sagredo
Francisco J. Herranz
+ Noncommutative (A)dS and Minkowski spacetimes from quantum Lorentz subgroups 2021 Ángel Ballesteros
Iván Gutiérrez-Sagredo
Francisco J. Herranz
+ PDF Chat Coisotropic Lie bialgebras and complementary dual Poisson homogeneous spaces 2021 Ángel Ballesteros
Iván Gutiérrez-Sagredo
Flavio Mercati
+ PDF Chat Lie-Hamilton systems on Riemannian and Lorentzian spaces from conformal transformations and some of its applications 2024 Rutwig Campoamor-Stursberg
Oscar Carballal
Francisco J. Herranz
+ Geometric Obstructions on Gravity 2019 Yuri Ximenes Martins
Rodney Josué Biezuner
+ Nonholonomic Clifford and Finsler Structures, Non-Commutative Ricci Flows, and Mathematical Relativity 2012 Sergiu I. Vacaru
+ Nonholonomic Clifford Structures and Noncommutative Riemann--Finsler Geometry 2004 Sergiu I. Vacaru
+ PDF Chat Noncommutative (A)dS and Minkowski spacetimes from quantum Lorentz subgroups 2021 Ángel Ballesteros
Iván Gutiérrez-Sagredo
Francisco J. Herranz
+ Noncommutative spaces of worldlines 2019 Ángel Ballesteros
Iván Gutiérrez-Sagredo
Francisco J. Herranz