The Weyl transform and 𝐿^{𝑝} functions on phase space

Type: Article

Publication Date: 1992-01-01

Citations: 13

DOI: https://doi.org/10.1090/s0002-9939-1992-1100663-7

Abstract

This is primarily a negative paper showing that a bound of the form <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue EndAbsoluteValue upper W left-parenthesis f right-parenthesis StartAbsoluteValue EndAbsoluteValue operator norm less-than-or-equal-to c StartAbsoluteValue EndAbsoluteValue f StartAbsoluteValue EndAbsoluteValue Subscript p Baseline"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>W</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>operator norm</mml:mtext> </mml:mrow> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>c</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>f</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">||W(f)||{\text {operator norm}} \leq c||f|{|_p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> fails for the Weyl transform if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p greater-than 2"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p &gt; 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> properties of Wigner distribution functions are discussed as well as Cwikel’s theorem.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat 𝑊^{𝑝}-spaces and Fourier transform 1994 R. S. Pathak
Santosh Kumar Upadhyay
+ The Weyl Transform and L p Functions on Phase Space 1992 Barry Simon
+ The Bargmann Transform and Windowed Fourier Localization 2006 Min-Lin Lo
+ PDF Chat Extension of Fourier 𝐿^{𝑝}—𝐿^{𝑞} multipliers 1975 Michael Cowling
+ PDF Chat On the characterization of 𝐻^{𝑝}(𝑅ⁿ) in terms of Fourier multipliers 1990 Akihito Uchiyama
+ PDF Chat On Fourier transforms 1974 C. Nasim
+ Fourier and Hartley transforms - A mathematical twin 1997 N. Sundararajan
+ On the compactness of the Weyl operator in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi mathvariant="script">S</mml:mi></mml:mrow><mml:mrow><mml:mi>ω</mml:mi></mml:mrow></mml:msub></mml:math> 2025 Vicente Asensio
Chiara Boiti
David Jornet
Alessandro Oliaro
+ PDF Chat The Fourier transform in weighted rearrangement invariant spaces 2023 Mieczysław Mastyło
Gord Sinnamon
+ Weyl transforms on the upper half plane 2009 Lizhong Peng
Jiman Zhao
+ Compact Weyl Transforms 2006
+ Vector-valued properties of the Weyl transform 2024 Ritika Singhal
N. Shravan Kumar
+ PDF Chat Separation for differential operators and the 𝐿^{𝑝} spaces 1976 Anton Zettl
+ Wigner-Weyl′s transform and its contraction 2017 周川昇
Chuan-Sheng Chew
+ PDF Chat The Hilbert transform with exponential weights 1992 Leonardo Colzani
M. Vignati
+ PDF Chat Fourier analysis on the sphere 1975 Thomas Sherman
+ Fourier Analysis in ℝn 2017 Κ. L. Kuttler
+ Fourier theory 1988 S. J. Patterson
+ A trace formula for Weyl transforms 2000 Jingde Du
M. W. Wong
+ PDF Chat On Fourier integral operators 1982 A. El Kohen