Projects
Reading
People
Chat
SU\G
(šø)
/KĀ·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Learning Global Additive Explanations for Neural Nets Using Model Distillation
Sarah Tan
,
Rich Caruana
,
Giles Hooker
,
Paul Koch
,
Albert Gordo
Type:
Preprint
Publication Date:
2018-09-27
Citations:
79
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Impossibility theorems for feature attribution
2024
Blair Bilodeau
Natasha Jaques
Pang Wei Koh
Been Kim
+
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks
2020
Joseph D. Janizek
Pascal Sturmfels
SuāIn Lee
+
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks
2020
Joseph D. Janizek
Pascal Sturmfels
SuāIn Lee
+
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks
2020
Joseph D. Janizek
Pascal Sturmfels
SuāIn Lee
+
PDF
Chat
OMENN: One Matrix to Explain Neural Networks
2024
Adam WrĆ³bel
MikoÅaj Janusz
Bartosz ZieliÅski
Dawid Rymarczyk
+
Verifiable Feature Attributions: A Bridge between Post Hoc Explainability and Inherent Interpretability
2023
Usha Bhalla
Suraj Srinivas
Himabindu Lakkaraju
+
Explaining Neural Networks Semantically and Quantitatively
2018
Runjin Chen
Hao Chen
Ge Huang
Jie Ren
Quanshi Zhang
+
PDF
Chat
GLEAMS: Bridging the Gap Between Local and Global Explanations
2024
Giorgio Visani
Vincenzo Stanzione
Damien Garreau
+
Learning how to explain neural networks: PatternNet and PatternAttribution
2017
Pieter Jan Kindermans
Kristof T. SchĆ¼tt
Maximilian Alber
K. MĆ¼ller
Dumitru Erhan
Been Kim
Sven DƤhne
+
Learning how to explain neural networks: PatternNet and PatternAttribution
2017
Pieter-Jan Kindermans
Kristof T. SchĆ¼tt
Maximilian Alber
KlausāRobert MĆ¼ller
Dumitru Erhan
Been Kim
Sven DƤhne
+
Interpretable Mixture of Experts
2022
Aya Abdelsalam Ismail
Sercan Ć. Arık
Jinsung Yoon
Ankur Taly
Soheil Feizi
Tomas Pfister
+
Structural Neural Additive Models: Enhanced Interpretable Machine Learning
2023
Mattias Luber
Anton Thielmann
Benjamin SƤfken
+
Global Explanations of Neural Networks: Mapping the Landscape of Predictions
2019
Mark Ibrahim
Melissa Louie
Ceena Modarres
John Paisley
+
PDF
Chat
Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks
2024
Jon Vadillo
Roberto Santana
JosƩ A. Lozano
Marta Kwiatkowska
+
PDF
Chat
Explaining Neural Networks Semantically and Quantitatively
2019
Runjin Chen
Hao Chen
Ge Huang
Jie Ren
Quanshi Zhang
+
Impossibility Theorems for Feature Attribution
2022
Blair Bilodeau
Natasha Jaques
Pang Wei Koh
Been Kim
+
GLocalX - From Local to Global Explanations of Black Box AI Models
2021
Mattia Setzu
Riccardo Guidotti
Anna Monreale
Franco Turini
Dino Pedreschi
Fosca Giannotti
+
On Model Explanations with Transferable Neural Pathways
2023
Xinmiao Lin
Wentao Bao
Qi Yu
Yu Kong
+
Global Aggregations of Local Explanations for Black Box models
2019
Ilse van der Linden
Hinda Haned
Evangelos Kanoulas
+
Global Aggregations of Local Explanations for Black Box models
2019
Ilse van der Linden
Hinda Haned
Evangelos Kanoulas
Works That Cite This (54)
Action
Title
Year
Authors
+
PDF
Chat
Explainable Deep Learning: A Field Guide for the Uninitiated
2022
Gabriƫlle Ras
Ning Xie
Marcel van Gerven
Derek Doran
+
On the Lack of Robust Interpretability of Neural Text Classifiers
2021
Muhammad Bilal Zafar
Michele Donini
Dylan Slack
CĆ©dric Archambeau
Sanjiv Ranjan Das
Krishnaram Kenthapadi
+
"Why Should You Trust My Explanation?" Understanding Uncertainty in LIME Explanations
2019
Yujia Zhang
Kuangyan Song
Yiming Sun
Sarah Tan
Madeleine Udell
+
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks
2020
Joseph D. Janizek
Pascal Sturmfels
SuāIn Lee
+
Linear Distillation Learning.
2019
Arip Asadulaev
Š. Š. ŠŃŠ·Š½ŠµŃŠ¾Š²
Andrey Filchenkov
+
A novel method for extracting interpretable knowledge from a spiking neural classifier with time-varying synaptic weights
2019
Abeegithan Jeyasothy
Suresh Sundaram
Savitha Ramasamy
N. Sundararajan
+
FEED: Feature-level Ensemble for Knowledge Distillation
2019
Seonguk Park
Nojun Kwak
+
Learning Architectures for Binary Networks
2020
Dahyun Kim
Kunal Pratap Singh
Jonghyun Choi
+
Knowledge Distillation as Semiparametric Inference
2021
Tri Dao
Govinda M. Kamath
Vasilis Syrgkanis
Lester Mackey
+
PDF
Chat
Rationalizing predictions by adversarial information calibration
2022
Lei Sha
Oana-Maria Camburu
Thomas Lukasiewicz
Works Cited by This (12)
Action
Title
Year
Authors
+
Generalized Additive Models: An Introduction with R, Second Edition
2017
Simon N. Wood
+
A Review on Global Sensitivity Analysis Methods
2015
Bertrand Iooss
Paul LemaƮtre
+
Predictive learning via rule ensembles
2008
Jerome H. Friedman
Bogdan Popescu
+
PDF
Chat
Shape constrained additive models
2014
Natalya Pya
Simon N. Wood
+
Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables
2007
Giles Hooker
+
Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
2001
I. M. Sobol
+
PDF
Chat
Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models
2010
Simon N. Wood
+
Towards A Rigorous Science of Interpretable Machine Learning
2017
Finale DoshiāVelez
Been Kim
+
Interpreting Blackbox Models via Model Extraction
2017
Osbert Bastani
Carolyn Kim
Hamsa Bastani
+
Interpretable and Explorable Approximations of Black Box Models
2017
Himabindu Lakkaraju
Ece Kamar
Rich Caruana
Jure Leskovec