Learning Global Additive Explanations for Neural Nets Using Model Distillation

Type: Preprint

Publication Date: 2018-09-27

Citations: 79

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Impossibility theorems for feature attribution 2024 Blair Bilodeau
Natasha Jaques
Pang Wei Koh
Been Kim
+ Explaining Explanations: Axiomatic Feature Interactions for Deep Networks 2020 Joseph D. Janizek
Pascal Sturmfels
Suā€In Lee
+ Explaining Explanations: Axiomatic Feature Interactions for Deep Networks 2020 Joseph D. Janizek
Pascal Sturmfels
Suā€In Lee
+ Explaining Explanations: Axiomatic Feature Interactions for Deep Networks 2020 Joseph D. Janizek
Pascal Sturmfels
Suā€In Lee
+ PDF Chat OMENN: One Matrix to Explain Neural Networks 2024 Adam WrĆ³bel
Mikołaj Janusz
Bartosz Zieliński
Dawid Rymarczyk
+ Verifiable Feature Attributions: A Bridge between Post Hoc Explainability and Inherent Interpretability 2023 Usha Bhalla
Suraj Srinivas
Himabindu Lakkaraju
+ Explaining Neural Networks Semantically and Quantitatively 2018 Runjin Chen
Hao Chen
Ge Huang
Jie Ren
Quanshi Zhang
+ PDF Chat GLEAMS: Bridging the Gap Between Local and Global Explanations 2024 Giorgio Visani
Vincenzo Stanzione
Damien Garreau
+ Learning how to explain neural networks: PatternNet and PatternAttribution 2017 Pieter Jan Kindermans
Kristof T. SchĆ¼tt
Maximilian Alber
K. MĆ¼ller
Dumitru Erhan
Been Kim
Sven DƤhne
+ Learning how to explain neural networks: PatternNet and PatternAttribution 2017 Pieter-Jan Kindermans
Kristof T. SchĆ¼tt
Maximilian Alber
Klausā€Robert MĆ¼ller
Dumitru Erhan
Been Kim
Sven DƤhne
+ Interpretable Mixture of Experts 2022 Aya Abdelsalam Ismail
Sercan Ɩ. Arık
Jinsung Yoon
Ankur Taly
Soheil Feizi
Tomas Pfister
+ Structural Neural Additive Models: Enhanced Interpretable Machine Learning 2023 Mattias Luber
Anton Thielmann
Benjamin SƤfken
+ Global Explanations of Neural Networks: Mapping the Landscape of Predictions 2019 Mark Ibrahim
Melissa Louie
Ceena Modarres
John Paisley
+ PDF Chat Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks 2024 Jon Vadillo
Roberto Santana
JosƩ A. Lozano
Marta Kwiatkowska
+ PDF Chat Explaining Neural Networks Semantically and Quantitatively 2019 Runjin Chen
Hao Chen
Ge Huang
Jie Ren
Quanshi Zhang
+ Impossibility Theorems for Feature Attribution 2022 Blair Bilodeau
Natasha Jaques
Pang Wei Koh
Been Kim
+ GLocalX - From Local to Global Explanations of Black Box AI Models 2021 Mattia Setzu
Riccardo Guidotti
Anna Monreale
Franco Turini
Dino Pedreschi
Fosca Giannotti
+ On Model Explanations with Transferable Neural Pathways 2023 Xinmiao Lin
Wentao Bao
Qi Yu
Yu Kong
+ Global Aggregations of Local Explanations for Black Box models 2019 Ilse van der Linden
Hinda Haned
Evangelos Kanoulas
+ Global Aggregations of Local Explanations for Black Box models 2019 Ilse van der Linden
Hinda Haned
Evangelos Kanoulas