Real-Time Power System State Estimation and Forecasting via Deep Unrolled Neural Networks

Type: Article

Publication Date: 2019-07-07

Citations: 204

DOI: https://doi.org/10.1109/tsp.2019.2926023

Locations

  • IEEE Transactions on Signal Processing - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Gauss-Newton Unrolled Neural Networks and Data-driven Priors for Regularized PSSE with Robustness 2020 Qiuling Yang
Alireza Sadeghi
Gang Wang
Georgios B. Giannakis
Jian Sun
+ A Hybrid Deep Learning-Based State Forecasting Method for Smart Power Grids 2021 Shahrzad Hadayeghparast
Amir Namavar Jahromi
Hadis Karimipour
+ Physics-Informed Neural Networks for Time-Domain Simulations: Accuracy, Computational Cost, and Flexibility 2023 Jochen Stiasny
Spyros Chatzivasileiadis
+ PDF Chat Physics-Informed Neural Networks for Accelerating Power System State Estimation 2023 Solon Falas
Markos Asprou
Charalambos Konstantinou
Maria K. Michael
+ Physics-Informed Neural Networks for Accelerating Power System State Estimation 2023 Solon Falas
Markos Asprou
Charalambos Konstantinou
Maria K. Michael
+ Physics-Informed Deep Neural Network Method for Limited Observability State Estimation 2019 Jonatan Ostrometzky
Konstantin Berestizshevsky
Andrey Bernstein
Gil Zussman
+ PDF Chat Sequence-to-Sequence Forecasting-aided State Estimation for Power Systems 2021 Kamal Basulaiman
Masoud Barati
+ Physics-Informed Deep Neural Network Method for Limited Observability State Estimation 2020 Jonathan Ostrometzky
Konstantin Berestizshevsky
Andrey Bernstein
Gil Zussman
+ Physics-Informed Graphical Neural Network for Parameter & State Estimations in Power Systems 2021 Laurent Pagnier
Michael Chertkov
+ PDF Chat Supporting Future Electrical Utilities: Using Deep Learning Methods in EMS and DMS Algorithms 2023 Ognjen Kundačina
Gorana Gojić
Dragiša Mišković
Mile Mitrovic
Dejan Vukobratović
+ Supporting Future Electrical Utilities: Using Deep Learning Methods in EMS and DMS Algorithms 2023 Ognjen Kundačina
Gorana Gojić
Mile Mitrovic
Dragiša Mišković
Dejan Vukobratović
+ Gradient-Enhanced Physics-Informed Neural Networks for Power Systems Operational Support 2022 Mostafa Mohammadian
Kyri Baker
Ferdinando Fioretto
+ MPC-based Realtime Power System Control with DNN-based Prediction/Sensitivity-Estimation 2021 Ramij Raja Hossain
Ratnesh Kumar
+ Real Time State Estimation of Power Grids Using Convolutional Neural Networks and State Forecasting Via Recurrent Neural Networks 2021 Sahil Vohra
+ Enhancement of Distribution System State Estimation Using Pruned Physics-Aware Neural Networks 2021 Minh‐Quan Tran
Ahmed S. Zamzam
Phuong H. Nguyen
+ Enhancement of Distribution System State Estimation Using Pruned Physics-Aware Neural Networks 2021 Minh‐Quan Tran
Ahmed S. Zamzam
Phuong H. Nguyen
+ Enhancement of Distribution System State Estimation Using Pruned Physics-Aware Neural Networks 2021 Minh‐Quan Tran
Ahmed S. Zamzam
Phuong Hoang Nguyen
+ Physics-Informed Graphical Neural Network for Parameter & State Estimations in Power Systems 2021 Laurent Pagnier
Michael Chertkov
+ PDF Chat Adaptive Informed Deep Neural Networks for Power Flow Analysis 2024 Zeynab Kaseb
Stavros Orfanoudakis
Pedro P. Vergara
Peter Pálenský
+ Deep Ensemble Learning-based Approach to Real-time Power System State Estimation 2021 Narayan Bhusal
Raj Mani Shukla
Mukesh Gautam
Mohammed Benidris
Shamik Sengupta