Nonperturbative renormalization and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>a</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math> -improvement of the nonsinglet vector current with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow></mml:…

Type: Article

Publication Date: 2019-01-31

Citations: 53

DOI: https://doi.org/10.1103/physrevd.99.014519

Abstract

In calculating hadronic contributions to precision observables for tests of the Standard Model in lattice QCD, the electromagnetic current plays a central role. Using a Wilson action with O($a$) improvement in QCD with $N_{\mathrm{f}}$ flavors, a counterterm must be added to the vector current in order for its on-shell matrix elements to be O($a$) improved. In addition, the local vector current, which has support on one lattice site, must be renormalized. At O($a$), the breaking of the SU($N_{\mathrm{f}}$) symmetry by the quark mass matrix leads to a mixing between the local currents of different quark flavors. We present a non-perturbative calculation of all the required improvement and renormalization constants needed for the local and the conserved electromagnetic current in QCD with $N_{\mathrm{f}}=2+1$ O($a$)-improved Wilson fermions and tree-level Symanzik improved gauge action, with the exception of one coefficient, which we show to be order $g_0^6$ in lattice perturbation theory. The method is based on the vector and axial Ward identities imposed at finite lattice spacing and in the chiral limit. We make use of lattice ensembles generated as part of the Coordinated Lattice Simulations (CLS) initiative.

Locations

  • Physical review. D/Physical review. D. - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Nonperturbative renormalization of the axial current in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">f</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:math>lattice QCD with Wilson fermions and a tree-level improved gauge action 2016 John Bulava
Michele Della Morte
Jochen Heitger
Christian Wittemeier
+ PDF Chat Scaling of nonperturbatively<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>a</mml:mi><mml:mo>)</mml:mo><mml:mn /></mml:math>-improved Wilson fermions: Hadron spectrum, quark masses, and decay constants 1998 M. Göckeler
R. Horsley
H. Perlt
P. E. L. Rakow
G. Schierholz
A. Schiller
P.W. Stephenson
+ PDF Chat Nonperturbative<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>a</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>improvement of the Wilson quark action with the renormalization-group-improved gauge action using the Schrödinger functional method 2006 Sinya Aoki
M. Fukugita
S. Hashimoto
K-I. Ishikawa
N. Ishizuka
Y. Iwasaki
K. Kanaya
T. Kaneko
Y. Kuramashi
M. Okawa
+ PDF Chat Perturbative renormalization factors and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>a</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>corrections for lattice four-fermion operators with improved fermion/gluon actions 2011 Martha Constantinou
P. Dimopoulos
R. Frezzotti
V. Lubicz
H. Panagopoulos
A. Skouroupathis
Fotos Stylianou
+ Non-perturbative improvement of the axial current in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:math> lattice QCD with Wilson fermions and tree-level improved gauge action 2015 John Bulava
Michele Della Morte
Jochen Heitger
Christian Wittemeier
+ PDF Chat The renormalised $$\mathrm{O}(a)$$ improved vector current in three-flavour lattice QCD with Wilson quarks 2021 Jochen Heitger
Fabian Joswig
+ PDF Chat Lattice renormalization of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>a</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>improved heavy-light operators 2007 B. Blossier
+ Improvement of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:math>lattice QCD with Wilson fermions and tree-level improved gauge action 2013 John Bulava
Stefan Schaefer
+ PDF Chat Lattice simulations with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>N</mml:mi><mml:mi>f</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math>improved Wilson fermions at a fixed strange quark mass 2016 Gunnar Bali
Enno E. Scholz
Jakob Simeth
Wolfgang Söldner
+ NON-PERTURBATIVE QCD: RENORMALIZATION, <font>O(A)</font>-IMPROVEMENT AND MATCHING TO HEAVY QUARK EFFECTIVE THEORY 2007 Rainer Sommer
+ PDF Chat Nonperturbative<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>a</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>improvement of Wilson quark action in three-flavor QCD with plaquette gauge action 2005 N. Yamada
Sinya Aoki
M. Fukugita
S. Hashimoto
K-I. Ishikawa
N. Ishizuka
Y. Iwasaki
K. Kanaya
T. Kaneko
Y. Kuramashi
+ PDF Chat Nonperturbative improvement of the vector current in Wilson lattice QCD 2015 Tim Harris
Harvey B. Meyer
+ PDF Chat Leading hadronic contribution to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>g</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn><mml:msub><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>μ</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> from lattice QCD with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>N</mml:mi><mml:mi mathvariant="normal">f… 2019 Antoine Gérardin
Marco Cè
Georg von Hippel
Ben Hörz
Harvey B. Meyer
Daniel Mohler
Konstantin Ottnad
Jonas Wilhelm
Hartmut Wittig
+ Non-perturbative renormalisation and improvement of the local vector current for quenched and unquenched Wilson fermions 2003 T. Bakeyev
M. Göckeler
R. Horsley
D. Pleiter
P. E. L. Rakow
G. Schierholz
H. Stüben
+ PDF Chat Lattice renormalization of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>a</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>improved heavy-light operators: An addendum 2011 B. Blossier
+ Non-perturbative QCD: renormalization, O(a)-improvement and matching to Heavy Quark Effective Theory 2006 Rainer Sommer
+ Non-perturbative QCD: renormalization, O(a)-improvement and matching to Heavy Quark Effective Theory 2006 Rainer Sommer
+ PDF Chat Effectiveness of Nonperturbative<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">O</mml:mi><mml:mo>(</mml:mo><mml:mi mathvariant="italic">a</mml:mi><mml:mo>)</mml:mo></mml:math>Improvement in Lattice QCD 1998 Robert G. Edwards
Urs M. Heller
Timothy R. Klassen
+ Non-perturbative renormalization of the static vector current and its O(a)-improvement in quenched QCD 2007 Filippo Palombi
+ Heavy Wilson Quarks and O($a$) Improvement: Nonperturbative Results for $b_{\rm g}$ 2024 Mattia Dalla Brida
Roman Höllwieser
Francesco Knechtli
Tomasz Korzec
Stefan Sint
Rainer Sommer

Works That Cite This (43)

Action Title Year Authors
+ PDF Chat Precision $B^*B\pi$ coupling from three-flavor lattice QCD 2022 Simon Kuberski
Antoine Gérardin
Jochen Heitger
Hubert Simma
Rainer Sommer
+ PDF Chat Nucleon Sigma Terms with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> Flavors of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>a</mml:mi><mml:mo stretchy="… 2023 Andria Agadjanov
Dalibor Djukanovic
Georg von Hippel
Harvey B. Meyer
Konstantin Ottnad
Hartmut Wittig
+ Exploring the tension between nature and the Standard Model: the muon g-2 2020 Marina Krstić Marinković
N. Cardoso
+ The anomalous magnetic moment of the muon in the Standard Model 2020 Tadayoshi Aoyama
Nils Asmussen
M. Benayoun
Johan Bijnens
Thomas Blum
Mattia Bruno
I. Caprini
C. M. Carloni Calame
Marco Cè
Gilberto Colangelo
+ PDF Chat FLAG Review 2019 2020 Sinya Aoki
Yasumichi Aoki
Damir Bečirević
Tom Blum
Gilberto Colangelo
Sara Collins
Michele Della Morte
P. Dimopoulos
Stephan Dürr
Hidenori Fukaya
+ Proton and neutron electromagnetic radii and magnetic moments from $N_f = 2 + 1$ lattice QCD 2024 Miguel Salg
Dalibor Djukanovic
Georg von Hippel
Harvey B. Meyer
Konstantin Ottnad
Hartmut Wittig
+ PDF Chat The hadronic running of the electromagnetic coupling and electroweak mixing angle 2023 Miguel Teseo San José Pérez
Hartmut Wittig
Marco Cè
Antoine Gérardin
Georg von Hippel
Harvey B. Meyer
Kohtaroh Miura
Konstantin Ottnad
Andreas Risch
Jonas Wilhelm
+ PDF Chat Window observable for the hadronic vacuum polarization contribution to the muon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:math> from lattice QCD 2022 Marco Cè
Antoine Gérardin
Georg von Hippel
Renwick J. Hudspith
Simon Kuberski
Harvey B. Meyer
K. Miura
Daniel Mohler
Konstantin Ottnad
Srijit Paul
+ PDF Chat The renormalised $$\mathrm{O}(a)$$ improved vector current in three-flavour lattice QCD with Wilson quarks 2021 Jochen Heitger
Fabian Joswig
+ PDF Chat Coordinate-space calculation of the window observable for the hadronic vacuum polarization contribution to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:mi>g</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn><mml:msub><mml:mo stretchy="false">)</mml:mo><mml:mi>μ</mml:mi></mml:msub></mml:math> 2023 En-Hung Chao
Harvey B. Meyer
Julian Parrino

Works Cited by This (23)

Action Title Year Authors
+ Non-perturbative renormalisation and improvement of the local vector current for quenched and unquenched Wilson fermions 2003 T. Bakeyev
M. Göckeler
R. Horsley
D. Pleiter
P. E. L. Rakow
G. Schierholz
H. Stüben
+ Improvement of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:math>lattice QCD with Wilson fermions and tree-level improved gauge action 2013 John Bulava
Stefan Schaefer
+ PDF Chat Simulation of QCD with N f = 2 + 1 flavors of non-perturbatively improved Wilson fermions 2015 Mattia Bruno
Dalibor Djukanovic
Georg P. Engel
Anthony Francis
Gregorio Herdoíza
Hanno Horch
Piotr Korcyl
Tomasz Korzec
Mauro Papinutto
Stefan Schaefer
+ PDF Chat Perturbative calculation of improvement coefficients to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>g</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mi>a</mml:mi><mml:mo>)</mml:mo></mml:math>for bilinear quark operators in lattice QCD 1998 Yusuke Taniguchi
A. Ukawa
+ PDF Chat Improved bilinears in lattice QCD with nondegenerate quarks 2006 Tanmoy Bhattacharya
Rajan Gupta
Weonjong Lee
Stephen R. Sharpe
Jackson M. S. Wu
+ PDF Chat Chiral symmetry and O(a) improvement in lattice QCD 1996 Martin Lüscher
+ PDF Chat O(<i>a</i>) improved twisted mass lattice QCD 2001 R. Frezzotti
Stefan Sint
Peter Weisz
+ Non-perturbative improvement of the axial current in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:math> lattice QCD with Wilson fermions and tree-level improved gauge action 2015 John Bulava
Michele Della Morte
Jochen Heitger
Christian Wittemeier
+ PDF Chat Lattice QCD with open boundary conditions and twisted-mass reweighting 2012 Martin Lüscher
Stefan Schaefer
+ PDF Chat Practical all-to-all propagators for lattice QCD 2005 Justin Foley
Keisuke Jimmy Juge
Alan Ó Cais
Mike Peardon
Sinéad M. Ryan
Jon-Ivar Skullerud