Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control
Kendall Lowrey
,
Aravind Rajeswaran
,
Sham M. Kakade
,
Emanuel Todorov
,
Igor Mordatch
Type:
Preprint
Publication Date:
2018-11-05
Citations:
62
View
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control
2018
Kendall Lowrey
Aravind Rajeswaran
Sham M. Kakade
Emanuel Todorov
Igor Mordatch
+
COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically for Model-Based RL
2023
Xiyao Wang
Ruijie Zheng
Yanchao Sun
Ruonan Jia
Wichayaporn Wongkamjan
Huazhe Xu
Furong Huang
+
Blending MPC & Value Function Approximation for Efficient Reinforcement Learning
2020
Mohak Bhardwaj
Sanjiban Choudhury
Byron Boots
+
Blending MPC & Value Function Approximation for Efficient Reinforcement Learning
2020
Mohak Bhardwaj
Sanjiban Choudhury
Byron Boots
+
Guided Uncertainty-Aware Policy Optimization: Combining Learning and Model-Based Strategies for Sample-Efficient Policy Learning
2020
Michelle A. Lee
Carlos Florensa
Jonathan Tremblay
Nathan Ratliff
Animesh Garg
Fábio Ramos
Dieter Fox
+
Exploration via Planning for Information about the Optimal Trajectory
2022
Viraj Mehta
Ian Char
Joseph Abbate
Rory Conlin
Mark D. Boyer
Stefano Ermon
Jeff Schneider
Willie Neiswanger
+
Improving Model-Based Control and Active Exploration with Reconstruction Uncertainty Optimization
2018
Norman Di Palo
Harri Valpola
+
Model-Based Offline Planning
2020
Arthur Argenson
Gabriel Dulac-Arnold
+
PDF
Chat
Guided Uncertainty-Aware Policy Optimization: Combining Learning and Model-Based Strategies for Sample-Efficient Policy Learning
2020
Michelle A. Lee
Carlos Florensa
Jonathan Tremblay
Nathan Ratliff
Animesh Garg
Fábio Ramos
Dieter Fox
+
Guided Uncertainty-Aware Policy Optimization: Combining Learning and Model-Based Strategies for Sample-Efficient Policy Learning
2020
Michelle A. Lee
Carlos Florensa
Jonathan Tremblay
Nathan Ratliff
Animesh Garg
Fábio Ramos
Dieter Fox
+
A survey on policy search algorithms for learning robot controllers in a handful of trials
2018
Konstantinos Chatzilygeroudis
Vassilis Vassiliades
Freek Stulp
Sylvain Calinon
Jean-Baptiste Mouret
+
Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics
2021
Ingmar Schubert
Danny Driess
Ozgur S. Oguz
Marc Toussaint
+
PDF
Chat
Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics
2021
Ingmar Schubert
Danny Driess
Ozgur S. Oguz
Marc Toussaint
+
Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics
2021
Ingmar Schubert
Danny Driess
Ozgur S. Oguz
Marc Toussaint
+
Model-Based Offline Planning
2020
Arthur Argenson
Gabriel Dulac-Arnold
+
Model-based Lookahead Reinforcement Learning
2019
Zhang-Wei Hong
Joni Pajarinen
Jan Peters
+
LVIS: Learning from Value Function Intervals for Contact-Aware Robot Controllers
2018
Robin Deits
Twan Koolen
Russ Tedrake
+
LVIS: Learning from Value Function Intervals for Contact-Aware Robot Controllers
2018
Robin Deits
Twan Koolen
Russ Tedrake
+
Regularizing Model-Based Planning with Energy-Based Models
2019
Rinu Boney
Juho Kannala
Alexander Ilin
+
Model Learning for Look-ahead Exploration in Continuous Control
2018
Arpit Agarwal
Katharina Muelling
Katerina Fragkiadaki
Cited by (52)
Action
Title
Year
Authors
+
Deep Dynamics Models for Learning Dexterous Manipulation
2019
Anusha Nagabandi
Kurt Konoglie
Sergey Levine
Vikash Kumar
+
Model-Augmented Actor-Critic: Backpropagating through Paths
2020
Ignasi Clavera
Violet Fu
Pieter Abbeel
+
Safe Interactive Model-Based Learning
2019
Marco Gallieri
Seyed Sina Mirrazavi Salehian
Nihat Engin Toklu
Alessio Quaglino
Jonathan Masci
Jan Koutník
Faustino Gomez
+
Learning Physics-Based Manipulation in Clutter: Combining Image-Based Generalization and Look-Ahead Planning
2019
Wissam Bejjani
Mehmet R. Doğar
Matteo Leonetti
+
PDF
Chat
Learning Physics-Based Manipulation in Clutter: Combining Image-Based Generalization and Look-Ahead Planning
2019
Wissam Bejjani
Mehmet R. Doğar
Matteo Leonetti
+
Improving Model-Based Control and Active Exploration with Reconstruction Uncertainty Optimization
2018
Norman Di Palo
Harri Valpola
+
Multi-Objective Graph Heuristic Search for Terrestrial Robot Design
2021
Jie Xu
Andrew Spielberg
Allan Zhao
Daniela Rus
Wojciech Matusik
+
AI and Wargaming
2020
James Goodman
Sebastian Risi
Simon M. Lucas
+
Planning to Explore via Self-Supervised World Models
2020
R. Sekar
Oleh Rybkin
Kostas Daniilidis
Pieter Abbeel
Danijar Hafner
Deepak Pathak
+
PDF
Chat
Comparison of Deep Reinforcement Learning and Model Predictive Control for Adaptive Cruise Control
2020
Yuan Lin
John McPhee
Nasser L. Azad
+
Learning Off-Policy with Online Planning
2020
Harshit Sikchi
Wenxuan Zhou
David Held
+
Regularizing Trajectory Optimization with Denoising Autoencoders
2019
Rinu Boney
Norman Di Palo
Mathias Berglund
Alexander Ilin
Juho Kannala
Antti Rasmus
Harri Valpola
+
Project Thyia: A Forever Gameplayer
2019
Raluca D. Gaina
Simon M. Lucas
Diego Pérez-Liébana
+
Discriminator Augmented Model-Based Reinforcement Learning
2021
Behzad Haghgoo
Allan Zhou
Archit Sharma
Chelsea Finn
+
ABC-LMPC: Safe Sample-Based Learning MPC for Stochastic Nonlinear Dynamical Systems with Adjustable Boundary Conditions
2020
Brijen Thananjeyan
Ashwin Balakrishna
Ugo Rosolia
Joseph E. Gonzalez
Aaron D. Ames
Ken Goldberg
+
Where to go next: Learning a Subgoal Recommendation Policy for Navigation Among Pedestrians
2021
Bruno Brito
Michael Everett
Jonathan P. How
Javier Alonso‐Mora
+
Model-based Reinforcement Learning for Semi-Markov Decision Processes with Neural ODEs
2020
Jianzhun Du
Joseph Futoma
Finale Doshi‐Velez
+
Learn Goal-Conditioned Policy with Intrinsic Motivation for Deep Reinforcement Learning
2022
Jinxin Liu
Donglin Wang
Qiangxing Tian
Zhengyu Chen
+
From proprioception to long-horizon planning in novel environments: A hierarchical RL model.
2020
Nishad Gothoskar
Miguel Lázaro-Gredilla
Dileep George
+
PDF
Chat
Multi-Objective Graph Heuristic Search for Terrestrial Robot Design
2021
Jie Xu
Andrew Spielberg
Allan Zhao
Daniela Rus
Wojciech Matusik
+
Is Curiosity All You Need? On the Utility of Emergent Behaviours from Curious Exploration
2021
Oliver Groth
Markus Wulfmeier
Giulia Vezzani
Vibhavari Dasagi
Tim Hertweck
Roland Hafner
Nicolas Heess
Martin Riedmiller
+
PDF
Chat
Safety Augmented Value Estimation From Demonstrations (SAVED): Safe Deep Model-Based RL for Sparse Cost Robotic Tasks
2020
Brijen Thananjeyan
Ashwin Balakrishna
Ugo Rosolia
Felix Li
Rowan McAllister
Joseph E. Gonzalez
Sergey Levine
Francesco Borrelli
Ken Goldberg
+
Dream to Control: Learning Behaviors by Latent Imagination
2019
Danijar Hafner
Timothy Lillicrap
Jimmy Ba
Mohammad Norouzi
+
Safe Model-Based Off-Policy Reinforcement Learning for Eco-Driving in Connected and Automated Hybrid Electric Vehicles
2022
Zhaoxuan Zhu
Nicola Pivaro
Shobhit Gupta
Abhishek Gupta
Marcello Canova
+
Safely Learning Dynamical Systems from Short Trajectories
2020
Amir Ali Ahmadi
Abraar Chaudhry
Vikas Sindhwani
Stephen Tu
+
Self-Adapting Recurrent Models for Object Pushing from Learning in Simulation
2020
Cong Lin
Michael Görner
Philipp Ruppel
Hongzhuo Liang
Norman Hendrich
Jianwei Zhang
+
Blending MPC & Value Function Approximation for Efficient Reinforcement Learning
2020
Mohak Bhardwaj
Sanjiban Choudhury
Byron Boots
+
Continuous Control With Ensemble Deep Deterministic Policy Gradients
2021
Piotr Januszewski
Mateusz Olko
Michał Królikowski
Jakub Świątkowski
Marcin Andrychowicz
Łukasz Kuciński
Piotr Miłoś
+
Optimization of the model predictive control meta-parameters through reinforcement learning
2023
Eivind Bøhn
Sébastien Gros
Signe Moe
Tor Arne Johansen
+
PDF
Chat
Mini Cheetah, the Falling Cat: A Case Study in Machine Learning and Trajectory Optimization for Robot Acrobatics
2022
Vince Kurtz
He Li
Patrick M. Wensing
Hai Lin
+
Reinforcement Learning of the Prediction Horizon in Model Predictive Control
2021
Eivind Bøhn
Sébastien Gros
Signe Moe
Tor Arne Johansen
+
Model Predictive Actor-Critic: Accelerating Robot Skill Acquisition with Deep Reinforcement Learning
2021
Andrew S. Morgan
Daljeet Nandha
Georgia Chalvatzaki
Carlo D’Eramo
Aaron M. Dollar
Jan Peters
+
Disentangled Attention as Intrinsic Regularization for Bimanual Multi-Object Manipulation.
2021
Minghao Zhang
Pingcheng Jian
Yi Wu
Huazhe Xu
Xiaolong Wang
+
A novel approach to model exploration for value function learning
2019
Zlatan Ajanović
Halil Beglerovic
Bakir Lačević
+
Information Theoretic Regret Bounds for Online Nonlinear Control
2020
Sham M. Kakade
Akshay Krishnamurthy
Kendall Lowrey
Motoya Ohnishi
W. Sun
+
Information Theoretic Model Predictive Q-Learning
2020
Mohak Bhardwaj
Ankur Handa
Dieter Fox
Byron Boots
+
Dream to Control: Learning Behaviors by Latent Imagination.
2019
Danijar Hafner
Timothy Lillicrap
Jimmy Ba
Mohammad Norouzi
+
PDF
Chat
Self-Adapting Recurrent Models for Object Pushing from Learning in Simulation
2020
Cong Lin
Michael Grner
Philipp Ruppel
Hongzhuo Liang
Norman Hendrich
Jianwei Zhang
+
PDF
Chat
Learning Coordinated Terrain-Adaptive Locomotion by Imitating a Centroidal Dynamics Planner
2022
Philémon Brakel
Steven Bohez
Leonard Hasenclever
Nicolas Heess
Konstantinos Bousmalis
+
Reset-Free Lifelong Learning with Skill-Space Planning
2020
Kevin Lü
Aditya Grover
Pieter Abbeel
Igor Mordatch
Citing (18)
Action
Title
Year
Authors
+
High-Dimensional Continuous Control Using Generalized Advantage Estimation
2015
John Schulman
Philipp Moritz
Sergey Levine
Michael I. Jordan
Pieter Abbeel
+
PDF
Chat
A contextual-bandit approach to personalized news article recommendation
2010
Lihong Li
Wei Chu
John Langford
Robert E. Schapire
+
VIME: Variational Information Maximizing Exploration
2016
Rein Houthooft
Xi Chen
Yan Duan
John Schulman
Filip De Turck
Pieter Abbeel
+
Unifying Count-Based Exploration and Intrinsic Motivation
2016
Marc G. Bellemare
Sriram Srinivasan
Georg Ostrovski
Tom Schaul
David Saxton
Rémi Munos
+
Curiosity-driven Exploration by Self-supervised Prediction
2017
Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
+
Thinking Fast and Slow with Deep Learning and Tree Search
2017
Thomas Anthony
Tian Zheng
David Barber
+
Parameter Space Noise for Exploration
2017
Matthias Plappert
Rein Houthooft
Prafulla Dhariwal
Szymon Sidor
Richard Y. Chen
Xi Chen
Tamim Asfour
Pieter Abbeel
Marcin Andrychowicz
+
Noisy Networks for Exploration
2017
Meire Fortunato
Mohammad Gheshlaghi Azar
Bilal Piot
Jacob Menick
Ian Osband
Alex Graves
Vlad Mnih
Rémi Munos
Demis Hassabis
Olivier Pietquin
+
Universal Planning Networks
2018
Aravind Srinivas
Allan Jabri
Pieter Abbeel
Sergey Levine
Chelsea Finn
+
Truncated Horizon Policy Search: Combining Reinforcement Learning & Imitation Learning
2018
Wen Sun
J. Andrew Bagnell
Byron Boots
+
Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion
2018
Jacob Buckman
Danijar Hafner
George Tucker
Eugene Brevdo
Honglak Lee
+
PDF
Chat
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning
2018
Anusha Nagabandi
Gregory Kahn
Ronald S. Fearing
Sergey Levine
+
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
2010
Stéphane Ross
Geoffrey J. Gordon
J. Andrew Bagnell
+
PDF
Chat
Reinforcement learning for non-prehensile manipulation: Transfer from simulation to physical system
2018
Kendall Lowrey
Svetoslav Kolev
Jeremy Dao
Aravind Rajeswaran
Emanuel Todorov
+
Asynchronous Methods for Deep Reinforcement Learning
2016
Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
+
PDF
Chat
Learning dexterous in-hand manipulation
2019
OpenAI Marcin Andrychowicz
Bowen Baker
Maciek Chociej
Rafał Józefowicz
Bob McGrew
Jakub Pachocki
Arthur J Petron
Matthias Plappert
Glenn Powell
Alex Ray
+
PDF
Chat
Sim-to-Real Transfer of Robotic Control with Dynamics Randomization
2018
Xue Bin Peng
Marcin Andrychowicz
Wojciech Zaremba
Pieter Abbeel
+
Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models
2015
Bradly C. Stadie
Sergey Levine
Pieter Abbeel