Type: Article
Publication Date: 2019-01-31
Citations: 7
DOI: https://doi.org/10.1103/physrevd.99.012015
Decays ${\ensuremath{\chi}}_{cJ}(J=0,1,2)\ensuremath{\rightarrow}\ensuremath{\omega}\ensuremath{\phi}$ are studied using $(448.1\ifmmode\pm\else\textpm\fi{}2.9)\ifmmode\times\else\texttimes\fi{}{10}^{6}\ensuremath{\psi}(3686)$ events collected with the BESIII detector in 2009 and 2012. In addition to the previously established ${\ensuremath{\chi}}_{c0}\ensuremath{\rightarrow}\ensuremath{\omega}\ensuremath{\phi}$, the first observation of ${\ensuremath{\chi}}_{c1}\ensuremath{\rightarrow}\ensuremath{\omega}\ensuremath{\phi}$ is reported in this paper. The measured product branching fractions are $\mathcal{B}(\ensuremath{\psi}(3686)\ensuremath{\rightarrow}\ensuremath{\gamma}{\ensuremath{\chi}}_{c0})\ifmmode\times\else\texttimes\fi{}\mathcal{B}({\ensuremath{\chi}}_{c0}\ensuremath{\rightarrow}\ensuremath{\omega}\ensuremath{\phi})=(13.83\ifmmode\pm\else\textpm\fi{}0.70\ifmmode\pm\else\textpm\fi{}1.01)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$ and $\mathcal{B}(\ensuremath{\psi}(3686)\ensuremath{\rightarrow}\ensuremath{\gamma}{\ensuremath{\chi}}_{c1})\ifmmode\times\else\texttimes\fi{}\mathcal{B}({\ensuremath{\chi}}_{c1}\ensuremath{\rightarrow}\ensuremath{\omega}\ensuremath{\phi})=\phantom{\rule{0ex}{0ex}}(2.67\ifmmode\pm\else\textpm\fi{}0.31\ifmmode\pm\else\textpm\fi{}0.27)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$, and the absolute branching fractions are $\mathcal{B}({\ensuremath{\chi}}_{c0}\ensuremath{\rightarrow}\ensuremath{\omega}\ensuremath{\phi})=(13.84\ifmmode\pm\else\textpm\fi{}0.70\ifmmode\pm\else\textpm\fi{}1.08)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$ and $\mathcal{B}({\ensuremath{\chi}}_{c1}\ensuremath{\rightarrow}\ensuremath{\omega}\ensuremath{\phi})=(2.80\ifmmode\pm\else\textpm\fi{}0.32\ifmmode\pm\else\textpm\fi{}0.30)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$. We also find strong evidence for ${\ensuremath{\chi}}_{c2}\ensuremath{\rightarrow}\ensuremath{\omega}\ensuremath{\phi}$ with a statistical significance of $4.8\ensuremath{\sigma}$, and the corresponding product and absolute branching fractions are measured to be $\mathcal{B}(\ensuremath{\psi}(3686)\ensuremath{\rightarrow}\ensuremath{\gamma}{\ensuremath{\chi}}_{c2})\ifmmode\times\else\texttimes\fi{}\mathcal{B}({\ensuremath{\chi}}_{c2}\ensuremath{\rightarrow}\ensuremath{\omega}\ensuremath{\phi})=(0.91\ifmmode\pm\else\textpm\fi{}0.23\ifmmode\pm\else\textpm\fi{}0.12)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$ and $\mathcal{B}({\ensuremath{\chi}}_{c2}\ensuremath{\rightarrow}\ensuremath{\omega}\ensuremath{\phi})=(1.00\ifmmode\pm\else\textpm\fi{}0.25\ifmmode\pm\else\textpm\fi{}0.14)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$. Here, the first errors are statistical and the second ones systematic.