Non-i.i.d. random holomorphic dynamical systems and the probability of tending to infinity

Type: Article

Publication Date: 2019-09-05

Citations: 0

DOI: https://doi.org/10.1088/1361-6544/ab231e

Abstract

We consider random holomorphic dynamical systems on the Riemann sphere whose choices of maps are related to Markov chains. Our motivation is to generalize the facts which hold in i.i.d. random holomorphic dynamical systems. In particular, we focus on the function which represents the probability of tending to infinity. We show some sufficient conditions which make continuous on the whole space and we characterize the Julia sets in terms of the function under certain assumptions.

Locations

  • Nonlinearity - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Non-i.i.d. random holomorphic dynamical systems and the generic dichotomy 2022 Hiroki Sumi
Takayuki Watanabe
+ Random Julia sets that are Jordan curves but not quasicircles(Complex Dynamics and its Related Topics) 2007 Hiroki Sumi
+ Ergodic distributions of random dynamical systems 2006 Mark Berliner
Steven N. MacEachern
Catherine Forbes
+ Ergodic distributions of random dynamical systems 1997 L. Mark Berliner
Steven N. MacEachern
Catherine Forbes
+ Exponential Law for Random Maps on Compact Manifolds 2017 Nicolai Haydn
Jérôme Rousseau
Fan Yang
+ PDF Chat Random dynamics of transcendental functions 2018 Volker Mayer
Mariusz Urbański
+ PDF Chat Random complex dynamics and semigroups of holomorphic maps 2010 Hiroki Sumi
+ A vector valued almost sure invariance principle for time dependent non-uniformly expanding dynamical systems 2019 Yeor Hafouta
+ PDF Chat Random local complex dynamics 2018 Lorenzo Guerini
Han Peters
+ Uniform distribution of points on a sphere and some ergodic properties of solutions of linear ordinary differential equations in a complex region 2009 Alexander Givental
Boris Khesin
Jerrold E. Marsden
Alexander Varchenko
Oleg Viro
V. M. Zakalyukin
+ Random path in negatively curved manifolds 2020 Adrien Boulanger
Olivier Glorieux
+ Random Dynamical Systems and Random Maps 2013
+ Random Dynamical Systems and Random Maps 2013
+ Real analyticity for random dynamics of transcendental functions 2018 Volker Mayer
Mariusz Urbański
Anna Zdunik
+ Random non-hyperbolic exponential maps 2018 Mariusz Urbański
Anna Zdunik
+ Random non-hyperbolic exponential maps 2018 Mariusz Urbański
Anna Zdunik
+ Limit theorems for random non-uniformly expanding or hyperbolic maps 2020 Yeor Hafouta
+ Random Dynamical Systems 1998 Ludwig Arnold
+ Julia sets of random exponential maps 2020 Krzysztof Lech
+ Julia sets of random exponential maps 2020 Krzysztof Lech