The number of solutions to y2=px(ax2+2)

Type: Article

Publication Date: 2018-01-01

Citations: 0

DOI: https://doi.org/10.2298/pim1818149g

Abstract

We find a bound for the number of the positive solutions to the titled equation, improving a result of Togbé.As a consequence, we prove a conjecture of Togbé in a few cases.

Locations

  • Publications de l Institut Mathematique - View - PDF

Similar Works

Action Title Year Authors
+ The number of solutions to $y^2=px(Ax^2+2)$ 2015 Tarek Garici
Omar Kihel
Jesse Larone
+ The number of solutions to $y^2=px(Ax^2+2)$ 2015 Tarek Garici
Omar Kihel
Jesse Larone
+ PDF Chat ON THE EQUATION x(x+d)…(x+(k-1)d)=by 2 2000 Β. Brindza
Lajos Hajdu
Imre Z. Ruzsa
+ The Number of Solutions of the Diophantine Equation x 2 +p 2 =y n 2013 Liang Ming
+ On the Positive Integral Solutions of the Diophantine Equation x 3 + by + 1 xyz = 0 2008 Malaysian Mathematical
Florian Luca
+ The Upper Bound of Positive Integer Solution Number of the Equation y~2=nx(x~2±1) 2011 Limin Chen
+ The equation $|p^x \pm q^y| = c$ in nonnegative $x$, $y$ 2011 Reese Scott
Robert Styer
+ On the equation $x/y+y/z+z/x=4^{m}$ 2025 Nguyen Xuan Tho
+ Equations in the Spirit of The (3x + 1) Conjecture 2004
+ The Blakely Problem and The 3x Solution 2004 Mark William Osler
+ The equation $|p^x \pm q^y| = c$ in nonnegative $x$, $y$ 2011 Reese Scott
Robert Styer
+ PDF Chat On the Nagell-Ljunggren equation $(x^n - 1)/(x - 1) = y^q$ 2007 Yann Bugeaud
Preda Mihăilescu
+ Number of classes of solutions of the equation x2-Dy2=4E 2003 Mathieu Lemire
+ The number of solutions of the equation X1X2+bx3x4=N 1991 S. A. Zakharov
+ The Number of Solutions of λ(x) = n 2011 Kevin Ford
Florian Luca
+ ON THE NUMBER OF SOLUTIONS OF THE DIOPHANTINE EQUATION x 2 + 2 a p b = y 4 2015 Huilin Zhu
Okhan Soydan
+ The equation $$y^2=x^6+x^2+1$$ revisited 2022 Nguyen Xuan Tho
+ On the equation 1 + 2 + ⋯ +x=y for fixed x 2016 Attila Bérczes
Lajos Hajdu
Takafumi Miyazaki
István Pink
+ THE NUMBER OF SOLUTIONS OF THE CONGRUENCE y2 ≡ x6–α(mod p) 2015 A. R. Rajwade
+ PDF Chat The Diophantine equation $X(X + 1) = Y(Y^2 + 1)$. 1991 J. H. E. Cohn

Works That Cite This (0)

Action Title Year Authors