A simple derivation of $\zeta(1-K)=-B_K/K$

Type: Article

Publication Date: 2000-01-01

Citations: 12

DOI: https://doi.org/10.7169/facm/1538186691

Locations

  • Functiones et Approximatio Commentarii Mathematici - View

Similar Works

Action Title Year Authors
+ New Proof of the Equation $\sum_{k=1}^\infty \frac{\mu(k)}{k}=0.$ 2008 Edmund Landau
+ The $p$-exponent of the $K(1) 2003 Michael J. Fisher
+ New Proof of the Equation $\sum_{k=1}^\infty \frac{μ(k)}{k}=0.$ 2008 Edmund Landau
+ A simplification of the Kovarik formula 2006 Yanni Chen
Hong-Ke Du
Yongfeng Pang
+ A note on $\zeta'(O)$ 1983 J Jan Koekoek
+ Lost and Found: An Unpublished $$ \zeta $$ (2)-Proof 2011 Paul Levrie
+ A Note on the Sum $\sum 1/w_{k 2^n}$ 1998 Stanley Rabinowitz
+ A Simple Proof of the Formula ∑ ∞ k = 1 = π 2 /6 1973 Ioannis Papadimitriou
+ A closed-form expression for $\zeta(3)$ 2020 Tobias Kyrion
+ The Computation of $$\zeta (2k)$$, $$\beta (2k+1)$$ and Beyond by Using Telescoping Series 2024 Óscar Ciaurri
Luis M. Navas
Francisco J. Ruiz
Juan Malumbres
+ An elementary proof of $\zeta{(2)} = {\pi^2/6}$ and a recurrence formula for $\zeta{(2k)}$ 2011 F. M. S. Lima
+ Some new identities for ζ(k) 1981 Dmitry Leshchiner
+ PDF Chat Démonstration de l'équation $\sum\limits_{k=1}^\infty\frac{\mu(k)}k = 0$ 1898 Hans von Mangoldt
+ On a k-Fold Beta Integral Formula 2019 Di Wu
Zuoshunhua Shi
Xudong Nie
Dunyan Yan
+ Paul Koosis:The logarithmic integral 1・2 1996 貴彦 中路
+ One attempt to the $K3$ modular function - II 1979 Hironori Shiga
+ PDF Chat On the equation $1^k + 2^k + ... + x^k = y^z$ 1980 Kálmán Győry
R. Tijdeman
Marc Voorhoeve
+ A Very Simple Proof of the q-Product Expansion of the Δ-Function 2005 Winfried Kohnen
+ PDF Chat A note about $\{K_i(z)\}^\infty_{i=1}$ functions 2010 Branko Malešević
+ Another Proof of the Formula ∑1/k 2 = π 2 /6 1969 E. L. Stark

Works Cited by This (0)

Action Title Year Authors