An Invitation to Quantum Tomography

Type: Article

Publication Date: 2004-12-13

Citations: 96

DOI: https://doi.org/10.1111/j.1467-9868.2005.00491.x

Abstract

Summary We describe quantum tomography as an inverse statistical problem in which the quantum state of a light beam is the unknown parameter and the data are given by results of measurements performed on identical quantum systems. The state can be represented as an infinite dimensional density matrix or equivalently as a density on the plane called the Wigner function. We present consistency results for pattern function projection estimators and for sieve maximum likelihood estimators for both the density matrix of the quantum state and its Wigner function. We illustrate the performance of the estimators on simulated data. An EM algorithm is proposed for practical implementation. There remain many open problems, e.g. rates of convergence, adaptation and studying other estimators; a main purpose of the paper is to bring these to the attention of the statistical community.

Locations

  • Journal of the Royal Statistical Society Series B (Statistical Methodology) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • Data Archiving and Networked Services (DANS) - View - PDF

Similar Works

Action Title Year Authors
+ An invitation to quantum tomography (II) 2004 L.M. Artiles
Richard D. Gill
M.I. Guƣǎ
+ An invitation to quantum tomography 2003 Richard D. Gill
Mădălin Guƣǎ
+ PDF Chat State estimation in quantum homodyne tomography with noisy data 2008 Jean‐Marie Aubry
Cristina Butucea
Katia MĂ©ziani
+ PDF Chat Adaptive estimation of the density matrix in quantum homodyne tomography with noisy data 2013 Pierre Alquier
Katia MĂ©ziani
Gabriel Peyré
+ PDF Chat Homodyne Tomography and the Reconstruction of Quantum States of Light 2007 Giacomo Mauro D’Ariano
Lorenzo Maccone
Massimiliano F. Sacchi
+ PDF Chat Efficient tomography with unknown detectors 2017 L. Motka
Martin PaĂșr
J. Ƙeháček
Z. Hradil
L. L. SĂĄnchez-Soto
+ PDF Chat Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data 2007 Cristina Butucea
Mădălin Guƣǎ
L.M. Artiles
+ PDF Chat Quantum tomography of structured light patterns from simple intensity measurements 2024 M. Gil de Oliveira
A. L. S. Santos Junior
Patrick Lima
Amanda Conrado Silva Barbosa
B. Pinheiro da Silva
S. PĂĄdua
A. Z. Khoury
+ Informationally incomplete quantum tomography 2013 Yong Siah Teo
J. Ƙeháček
Z. Hradil
+ PDF Chat Quantum tomography as normalization of incompatible observations 1999 Z. Hradil
Johann Summhammer
H. Rauch
+ PDF Chat Nonparametric goodness-of fit testing in quantum homodyne tomography with noisy data 2008 Katia MĂ©ziani
+ PDF Chat Tomography of quantum detectors 2008 Jeff S. Lundeen
Alejandro Feito
Hendrik B. Coldenstrodt-Ronge
K. L. Pregnell
Christine Silberhorn
Timothy C. Ralph
Jens Eisert
Martin B. Plenio
Ian A. Walmsley
+ State reconstruction by simple measurements 2009 Alessia Allevi
Alessandra Andreoni
Maria Bondani
G. Brida
Marco Genovese
Marco Gramegna
Stefano Olivares
Matteo G. A. Paris
P. Traina
Guido Zambra
+ Quantum Tomography 2003 Giacomo Mauro D’Ariano
Matteo G. A. Paris
Massimiliano F. Sacchi
+ Quantum Tomography 2003 Giacomo Mauro D’Ariano
Matteo G. A. Paris
Massimiliano F. Sacchi
+ PDF Chat Easy better quantum process tomography 2024 Robin Blume-Kohout
Timothy Proctor
+ Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data 2015 Cristina Butucea
M. Guta
L.M. Artiles
+ Adaptive Quantum State Tomography with Neural Networks 2018 Yihui Quek
Stanislav Fort
Hui Khoon Ng
+ Adaptive Quantum State Tomography with Neural Networks 2018 Yihui Quek
Stanislav Fort
Hui Khoon Ng
+ PDF Chat Quantum Tomography under Prior Information 2013 Teiko Heinosaari
Luca Mazzarella
Michael M. Wolf