The structure of correlations of multiplicative functions at almost all scales, with applications to the Chowla and Elliott conjectures

Type: Article

Publication Date: 2019-12-07

Citations: 8

DOI: https://doi.org/10.2140/ant.2019.13.2103

Abstract

We study the asymptotic behaviour of higher order correlations $$ \mathbb{E}_{n \leq X/d} g_1(n+ah_1) \cdots g_k(n+ah_k)$$ as a function of the parameters $a$ and $d$, where $g_1,\dots,g_k$ are bounded multiplicative functions, $h_1,\dots,h_k$ are integer shifts, and $X$ is large. Our main structural result asserts, roughly speaking, that such correlations asymptotically vanish for almost all $X$ if $g_1 \cdots g_k$ does not (weakly) pretend to be a twisted Dirichlet character $n \mapsto \chi(n)n^{it}$, and behave asymptotically like a multiple of $d^{-it} \chi(a)$ otherwise. This extends our earlier work on the structure of logarithmically averaged correlations, in which the $d$ parameter is averaged out and one can set $t=0$. Among other things, the result enables us to establish special cases of the Chowla and Elliott conjectures for (unweighted) averages at almost all scales; for instance, we establish the $k$-point Chowla conjecture $ \mathbb{E}_{n \leq X} \lambda(n+h_1) \cdots \lambda(n+h_k)=o(1)$ for $k$ odd or equal to $2$ for all scales $X$ outside of a set of zero logarithmic density.

Locations

  • Algebra & Number Theory - View
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • Oxford University Research Archive (ORA) (University of Oxford) - View - PDF
  • DataCite API - View
  • Algebra & Number Theory - View
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • Oxford University Research Archive (ORA) (University of Oxford) - View - PDF
  • DataCite API - View
  • Algebra & Number Theory - View
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • Oxford University Research Archive (ORA) (University of Oxford) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF THE LOGARITHMICALLY AVERAGED CHOWLA AND ELLIOTT CONJECTURES FOR TWO-POINT CORRELATIONS 2016 Terence Tao
+ PDF Chat The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures 2019 Terence Tao
Joni Teräväinen
+ The logarithmically averaged Chowla and Elliott conjectures for two-point correlations 2015 Terence Tao
+ PDF Odd order cases of the logarithmically averaged Chowla conjecture 2018 Terence Tao
Joni Teräväinen
+ PDF ON BINARY CORRELATIONS OF MULTIPLICATIVE FUNCTIONS 2018 Joni Teräväinen
+ Monotone chains of Fourier coefficients of Hecke cusp forms 2020 Oleksiy Klurman
Alexander P. Mangerel
+ Divisor-bounded multiplicative functions in short intervals 2021 Alexander P. Mangerel
+ PDF The metric theory of the pair correlation function for small non‐integer powers 2022 Zeév Rudnick
Niclas Technau
+ PDF Chat Asymptotic independence of $\Omega(n)$ and $\Omega(n+1)$ along logarithmic averages 2024 Dimitrios Charamaras
Florian K. Richter
+ Equivalence of the logarithmically averaged Chowla and Sarnak conjectures 2016 Terence Tao
+ On the distribution of index of Farey Sequences 2022 Bittu
Sneha Chaubey
Shivani Goel
+ The Variance and Correlations of the Divisor Function in $\mathbb{F}_q [T]$, and Hankel Matrices 2021 Michael Yiasemides
+ On correlations of certain multiplicative functions 2015 R. Balasubramanian
Sumit Giri
Priyamvad Srivastav
+ Asymptotics for sums of twisted L-functions and applications 2005 Gautam Chinta
Solomon Friedberg
Jeffrey Hoffstein
+ Asymptotics for the twisted eta-product and applications to sign changes in partitions 2021 Walter Bridges
Johann Franke
Taylor Garnowski
+ Twisted $2k$th moments of primitive Dirichlet $L$-functions: beyond the diagonal 2022 Siegfred Baluyot
Caroline L. Turnage‐Butterbaugh
+ Lower-Order Biases Second Moments of Dirichlet Coefficients in Families of $L$-Functions 2018 Megumi Asada
Ryan Chen
Eva Fourakis
Yujin Kim
Andrew Kwon
Jared Duker Lichtman
Blake Mackall
Steven J. Miller
Eric Winsor
Karl Winsor
+ Triple Correlation Sums of Coefficients of Cusp Forms 2019 Thomas A. Hulse
Chan Ieong Kuan
David Lowry-Duda
Alexander Walker
+ Triple Correlation Sums of Coefficients of Cusp Forms 2019 Thomas A. Hulse
Chan Ieong Kuan
David Lowry-Duda
Alexander Walker
+ PDF An averaged form of Chowla’s conjecture 2015 Kaisa Matomäki
Maksym Radziwiłł
Terence Tao