Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Sign In
Light
Dark
System
Almost arithmetic progressions in the primes and other large sets
Jonathan M. Fraser
Type:
Preprint
Publication Date:
2018-09-05
Citations:
0
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
PDF
Chat
Almost Arithmetic Progressions in the Primes and Other Large Sets
2019
Jonathan M. Fraser
+
Almost arithmetic progressions in the primes and other large sets
2018
Jonathan M. Fraser
+
Arithmetic progressions of primes in short intervals
2007
Chunlei Liu
+
Long arithmetic progressions of primes
2005
Ben Green
+
PDF
Chat
The Green-Tao theorem: an exposition
2014
David Conlon
Jacob Fox
Yufei Zhao
+
Primes in Arbitrarily Long Arithmetic Progression
2012
Yum-Tong Siu
Leslie G. Valiant
+
Contributions to the Erdős’ conjecture on arithmetic progressions
2009
Roman Wituła
Damian Słota
+
Near Arithmetic Progressions in Sparse Sets
2019
Mauro Di Nasso
Isaac Goldbring
Martino Lupini
+
PDF
Chat
Approximate arithmetic structure in large sets of integers
2021
Jonathan M. Fraser
Han Yu
+
PDF
Chat
The Chen primes contain arbitrarily long arithmetic progressions
2009
Zhou Bin-bin
+
Patterns of primes
2010
J. Pintz
+
Patterns of primes
2010
J. Pintz
+
PDF
Chat
The primes contain arbitrarily long arithmetic progressions
2008
Benjamin Green
Terence Tao
+
The Green-Tao theorem for primes of the form $x^2+y^2+1$
2017
Yu‐Chen Sun
Hao Pan
+
Arithmetic progressions and the primes - El Escorial lectures
2004
Terence Tao
+
Long arithmetic progressions and powers of 2
1989
Melvyn B. Nathanson
+
PDF
Chat
Primes in almost all short intervals
1998
Alessandro Zaccagnini
+
Arithmetic progressions and the primes
2006
Terence Tao
+
PDF
Chat
On products of primes and almost primes in arithmetic progressions
2022
Lilu Zhao
+
PDF
Chat
On almost-primes in arithmetic progressions
1976
Yoichi Motohashi
Works That Cite This (0)
Action
Title
Year
Authors
Works Cited by This (3)
Action
Title
Year
Authors
+
PDF
Chat
The primes contain arbitrarily long arithmetic progressions
2008
Benjamin Green
Terence Tao
+
PDF
Chat
Dimensions of Sets Which Uniformly Avoid Arithmetic Progressions
2017
Jonathan M. Fraser
Kota Saito
Han Yu
+
PDF
Chat
Arithmetic patches, weak tangents, and dimension
2017
Jonathan M. Fraser
Han Yu