Gaussian process regression for survival time prediction with genome-wide gene expression

Type: Preprint

Publication Date: 2018-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1808.10541

Locations

  • arXiv (Cornell University) - View - PDF
  • Europe PMC (PubMed Central) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Gaussian process regression for survival time prediction with genome-wide gene expression 2019 Aaron J. Molstad
Li Hsu
Wei Sun
+ PDF Chat Covariate dimension reduction for survival data via the Gaussian process latent variable model 2015 James E. Barrett
A C C Coolen
+ PDF Chat Bayesian data integration and variable selection for pan‐cancer survival prediction using protein expression data 2019 Arnab K. Maity
Anirban Bhattacharya
Bani K. Mallick
Veerabhadran Baladandayuthapani
+ Dynamic factor analysis with dependent Gaussian processes for high-dimensional gene expression trajectories 2024 Jiachen Cai
Robert J. B. Goudie
Colin Starr
Brian D. M. Tom
+ PDF Chat Kernel Cox partially linear regression: Building predictive models for cancer patients' survival 2023 Yaohua Rong
Sihai Dave Zhao
Zheng Xia
Yi Li
+ An interpretable probabilistic machine learning method for heterogeneous longitudinal studies. 2019 Juho Timonen
Henrik Mannerström
Aki Vehtari
Harri LÀhdesmÀki
+ Kernel Cox partially linear regression: building predictive models for cancer patients' survival 2023 Yaohua Rong
Sihai Dave Zhao
Zheng Xia
Yi Li
+ Covariate dimension reduction for survival data via the Gaussian process latent variable model 2014 James E. Barrett
A C C Coolen
+ Covariate dimension reduction for survival data via the Gaussian process latent variable model 2014 James E. Barrett
A C C Coolen
+ A scalable and flexible Cox proportional hazards model for high-dimensional survival prediction and functional selection 2022 Boyi Guo
Nengjun Yi
+ Gaussian process regression for survival analysis with interval censored data 2013 James Barrett
A C C Coolen
+ Dynamic Factor Analysis with Dependent Gaussian Processes for High-Dimensional Gene Expression Trajectories 2023 Jiachen Cai
Robert J. B. Goudie
Colin Starr
Brian D. M. Tom
+ Joint Modeling of Longitudinal and Survival Data, and Robust Nonparametric Regression 2020 Xiaotian Gao
+ Gaussian process regression models for the analysis of survival data with competing risks, interval censoring and high dimensionality 2015 James E. Barrett
+ Should univariate Cox regression be used for feature selection with respect to time-to-event outcomes? 2022 Rong Jian Lu
+ Semiparametric Bayesian kernel survival model for evaluating pathway effects 2018 Lin Zhang
Inyoung Kim
+ PDF Chat An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data 2019 Lu Cheng
Siddharth Ramchandran
Tommi Vatanen
Niina Lietzén
Riitta Lahesmaa
Aki Vehtari
Harri LÀhdesmÀki
+ When to encourage using Gaussian regression for feature selection tasks with time-to-event outcome 2022 Rong Lu
+ PDF Chat Low-dimensional confounder adjustment and high-dimensional penalized estimation for survival analysis 2015 Xiaochao Xia
Binyan Jiang
Jialiang Li
Wenyang Zhang
+ Covariate Gaussian Process Latent Variable Models. 2018 Kaspar MĂ€rtens
Kieran R. Campbell
Christopher Yau

Works That Cite This (0)

Action Title Year Authors