Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Transfer Learning for Estimating Causal Effects using Neural Networks
Sören R. Künzel
,
Bradly C. Stadie
,
Nikita Vemuri
,
Varsha Ramakrishnan
,
Jasjeet S. Sekhon
,
Pieter Abbeel
Type:
Preprint
Publication Date:
2018-08-23
Citations:
13
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Transfer Learning for Estimating Causal Effects using Neural Networks
2018
Sören R. Künzel
Bradly C. Stadie
Nikita Vemuri
Varsha Ramakrishnan
Jasjeet S. Sekhon
Pieter Abbeel
+
On Inductive Biases for Heterogeneous Treatment Effect Estimation
2021
Alicia Curth
Mihaela van der Schaar
+
On Inductive Biases for Heterogeneous Treatment Effect Estimation
2021
Alicia Curth
Mihaela van der Schaar
+
On Inductive Biases for Heterogeneous Treatment Effect Estimation
2021
Alicia Curth
Mihaela van der Schaar
+
Heterogeneous Treatment Effect Estimation through Deep Learning
2018
Ran Chen
Hanzhong Liu
+
Transfer Learning for Individual Treatment Effect Estimation
2022
Ahmed Aloui
Juncheng Dong
Cat P. Le
Vahid Tarokh
+
PDF
Chat
Metalearners for estimating heterogeneous treatment effects using machine learning
2019
Sören R. Künzel
Jasjeet S. Sekhon
Peter J. Bickel
Bin Yu
+
Data-Driven Estimation of Heterogeneous Treatment Effects
2023
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
+
Machine Learning for Estimating Heterogeneous Causal Effects
2015
Susan Athey
Guido W. Imbens
+
Machine Learning for Estimating Heterogeneous Causal Effects
2015
Susan Athey
Guido W. Imbens
+
Causal Inference from Small High-dimensional Datasets
2022
Raquel Aoki
Martin Ester
+
PDF
Chat
NESTER: An Adaptive Neurosymbolic Method for Causal Effect Estimation
2024
Abbavaram Gowtham Reddy
Vineeth N Balasubramanian
+
NESTER: An Adaptive Neurosymbolic Method for Causal Effect Estimation
2022
Abbavaram Gowtham Reddy
Vineeth N Balasubramanian
+
PDF
Chat
Neural Networks with Causal Graph Constraints: A New Approach for Treatment Effects Estimation
2024
Roger Pros
Jordi Vitrià
+
Causal forests and model shift transfer learning to estimate heterogeneous treatment effect
2024
Bérénice-Alexia Jocteur
+
Direct Learning with Multi-task Neural Networks for Treatment Effect Estimation
2021
Fujin Zhu
Jie Lü
Adi Lin
Junyu Xuan
Guangquan Zhang
+
Causal Inference Meets Machine Learning
2020
Peng Cui
Zheyan Shen
Sheng Li
Liuyi Yao
Yaliang Li
Zhixuan Chu
Jing Gao
+
PDF
Chat
Graph Neural Networks for Treatment Effect Prediction
2024
George Panagopoulos
Daniele Malitesta
Fragkiskos D. Malliaros
Jun Pang
+
Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms
2021
Alicia Curth
Mihaela van der Schaar
+
Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms
2021
Alicia Curth
Mihaela van der Schaar
Works That Cite This (13)
Action
Title
Year
Authors
+
Heterogeneous Treatment Effect Estimation through Deep Learning
2018
Ran Chen
Hanzhong Liu
+
PDF
Chat
Precise unbiased estimation in randomized experiments using auxiliary observational data
2023
Johann A. Gagnon-Bartsch
Adam Sales
Edward Ming‐Yang Wu
Anthony F. Botelho
John A. Erickson
Luke Miratrix
Neil T. Heffernan
+
Observational Data for Heterogeneous Treatment Effects with Application to Recommender Systems
2019
Akos Lada
Alexander Peysakhovich
Diego Aparicio
Michael Bailey
+
Balance Regularized Neural Network Models for Causal Effect Estimation
2020
Mehrdad Farajtabar
Andrew Lee
Yuanjian Feng
Vishal K. Gupta
P. Dolan
Harish Chandran
Martin Szummer
+
PDF
Chat
A general framework for causal classification
2021
Jiuyong Li
Weijia Zhang
Lin Liu
Kui Yu
Thuc Duy Le
Jixue Liu
+
A unified survey of treatment effect heterogeneity modeling and uplift modeling
2020
Weijia Zhang
Jiuyong Li
Lin Liu
+
Causaltoolbox---Estimator Stability for Heterogeneous Treatment Effects
2018
Sören R. Künzel
Simon J. S. Walter
Jasjeet S. Sekhon
+
Assessment of Heterogeneous Treatment Effect Estimation Accuracy via Matching
2020
Zijun Gao
Trevor Hastie
Robert Tibshirani
+
Uplift Modeling for Multiple Treatments with Cost Optimization
2019
Zhenyu Zhao
Totte Harinen
+
Estimation of Personalized Heterogeneous Treatment Effects Using Concatenation and Augmentation of Feature Vectors
2019
Lev V. Utkin
Mikhail V. Kots
Viacheslav S. Chukanov
Works Cited by This (17)
Action
Title
Year
Authors
+
A Nonparametric Bayesian Analysis of Heterogenous Treatment Effects in Digital Experimentation
2016
Matt Taddy
Matt Gardner
Liyun Chen
David Draper
+
Bayesian Nonparametric Modeling for Causal Inference
2010
Jennifer Hill
+
Estimating causal effects of treatments in randomized and nonrandomized studies.
1974
Donald B. Rubin
+
PDF
Chat
A Simple Method for Estimating Interactions Between a Treatment and a Large Number of Covariates
2014
Lü Tian
Ash A. Alizadeh
Andrew J. Gentles
Robert Tibshirani
+
Machine Learning Methods for Estimating Heterogeneous Causal Eects
2015
Susan Athey
Guido W. Imbens
+
PDF
Chat
The central role of the propensity score in observational studies for causal effects
1983
Paul R. Rosenbaum
Donald B. Rubin
+
PDF
Chat
Estimation and Inference of Heterogeneous Treatment Effects using Random Forests
2017
Stefan Wager
Susan Athey
+
Recursive partitioning for heterogeneous causal effects
2016
Susan Athey
Guido W. Imbens
+
PDF
Chat
Bayesian analysis of heterogeneous treatment effects for patient-centered outcomes research
2016
Nicholas C. Henderson
Thomas A. Louis
Chenguang Wang
Ravi Varadhan
+
PDF
Chat
Metalearners for estimating heterogeneous treatment effects using machine learning
2019
Sören R. Künzel
Jasjeet S. Sekhon
Peter J. Bickel
Bin Yu