Well-posedness results for a class of semi-linear super-diffusive equations

Type: Article

Publication Date: 2018-12-01

Citations: 37

DOI: https://doi.org/10.1016/j.na.2018.10.016

Locations

Similar Works

Action Title Year Authors
+ Well-posedness results for a class of semi-linear super-diffusive equations 2018 Edgardo Alvarez
Ciprian G. Gal
Valentin Keyantuo
Mahamadi Warma
+ Well-posedness results for a class of semi-linear super-diffusive equations 2018 Edgardo Alvarez
C. Gal
Valentin Keyantuo
Mahamadi Warma
+ PDF Chat Well-posedness results for fractional semi-linear wave equations 2019 Jean‐Daniel Djida
Arran Fernandez
Iván Area
+ The well-posedness for semilinear time fractional wave equations on $ \mathbb R^N $ 2022 Yong Zhou
Jia Wei He
Ahmed Alsaedi
Bashir Ahmad
+ PDF Chat On a singular time-fractional order wave equation with Bessel operator and Caputo derivative 2017 Saïd Mesloub
Imed Bachar
+ A time-fractional superdiffusion wave-like equation with subdiffusion possibly damping term: well-posedness and Mittag-Leffler stability 2024 C.L. Frota
Marcio A. Jorge Silva
S. B. Pinheiro
+ PDF Chat On Existence and Uniqueness of Solutions for Semilinear Fractional Wave Equations 2017 Yavar Kian
Masahiro Yamamoto
+ Fractional Diffusion-Wave Equations: Hidden Regularity for Weak Solutions 2021 Paola Loreti
Daniela Sforza
+ Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients 2021 Vo Van Au
Jagdev Singh
Nguyễn Anh Tuấn
+ Abstract nonlinear fractional evolution equations 2019 Carlos Lizama
+ Subordination principle for fractional diffusion-wave equations of Sobolev type 2020 Rodrigo Ponce
+ PDF Chat Weak Solutions for Time-Fractional Evolution Equations in Hilbert Spaces 2021 Paola Loreti
Daniela Sforza
+ Blow-up for time-fractional diffusion equations with superlinear convex semilinear terms 2023 Xinchi Huang
Yikan Liu
Masahiro Yamamoto
+ Partial fractional differential equations and some of their applications 2010 Anatoly A. Kilbas
+ Well-posedness of an initial value problem for fractional diffusion equation with Caputo–Fabrizio derivative 2020 Nguyen Huy Tuan
Yong Zhou
+ Existence and regularity results for terminal value problem for nonlinear super-diffusive fractional wave equations 2019 Nguyen Huy Tuan
Tomás Caraballo
Tran Bao Ngoc
Yong Zhou
+ Time fractional diffusion equations: solution concepts, regularity, and long-time behavior 2019 Rico Zacher
+ PDF Chat Existence results for fractional evolution equations with superlinear growth nonlinear terms 2023 Feng Wei
Pengyu Chen
+ Well-Posedness of Equations with Fractional Derivative 2010 Shang
Quan Quan
 Bu
+ PDF Chat A One-Dimensional Time-Fractional Damped Wave Equation with a Convection Term 2023 Ibtisam Aldawish
Mohamed Jleli
Bessem Samet