Cyclic Sieving and Plethysm Coefficients

Type: Article

Publication Date: 2015-01-01

Citations: 2

DOI: https://doi.org/10.46298/dmtcs.2509

Abstract

A combinatorial expression for the coefficient of the Schur function $s_{\lambda}$ in the expansion of the plethysm $p_{n/d}^d \circ s_{\mu}$ is given for all $d$ dividing $n$ for the cases in which $n=2$ or $\lambda$ is rectangular. In these cases, the coefficient $\langle p_{n/d}^d \circ s_{\mu}, s_{\lambda} \rangle$ is shown to count, up to sign, the number of fixed points of an $\langle s_{\mu}^n, s_{\lambda} \rangle$-element set under the $d^e$ power of an order $n$ cyclic action. If $n=2$, the action is the Schützenberger involution on semistandard Young tableaux (also known as evacuation), and, if $\lambda$ is rectangular, the action is a certain power of Schützenberger and Shimozono's <i>jeu-de-taquin</i> promotion.This work extends results of Stembridge and Rhoades linking fixed points of the Schützenberger actions to ribbon tableaux enumeration. The conclusion for the case $n=2$ is equivalent to the domino tableaux rule of Carré and Leclerc for discriminating between the symmetric and antisymmetric parts of the square of a Schur function. Une expression combinatoire pour le coefficient de la fonction de Schur $s_{\lambda}$ dans l’expansion du pléthysme $p_{n/d}^d \circ s_{\mu}$ est donné pour tous $d$ que disent $n$, dans les cas où $n=2$, ou $\lambda$ est rectangulaire. Dans ces cas, le coefficient $\langle p_{n/d}^d \circ s_{\mu}, s_{\lambda} \rangle$ se montre à compter, où l’on ignore le signe, le nombre des point fixés d’un ensemble de $\langle s_{\mu}^n, s_{\lambda} \rangle$ éléments sous la puissance $d^e$ d’une action cyclique de l’ordre $n$. Si $n=2$, l’action est l’involution de Schützenberger sur les tableaux semi-standard de Young (aussi connu sous le nom des évacuations), et si $\lambda$ est rectangulaire, l’action est une certaine puissance de l’avancement jeu-de-taquin de Schützenberger et Shimozono.Ce travail étend les résultats de Stembridge et Rhoades, liant les point fixés des actions de Schützenberger aux tableaux de ruban. Pour le cas $n=2$ , la conclusion est équivalent à la règle des tableaux de dominos de Carré et Leclerc, qui distingue entre les parties symétriques et asymétriques du carré d’une fonction de Schur.

Locations

  • Discrete Mathematics & Theoretical Computer Science - View - PDF
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Cyclic Sieving Phenomenon of Promotion on Rectangular Tableaux 2012 Donguk Rhee
+ Crystals, semistandard tableaux and cyclic sieving phenomenon 2019 Young-Tak Oh
Euiyong Park
+ Crystals, semistandard tableaux and cyclic sieving phenomenon 2019 Young-Tak Oh
Euiyong Park
+ PDF Chat Crystals, Semistandard Tableaux and Cyclic Sieving Phenomenon 2019 Young-Tak Oh
Euiyong Park
+ Skew characters and cyclic sieving. 2020 Per Alexandersson
Stephan Pfannerer
Martin Rubey
Joakim Uhlin
+ 3-Plethysms of homogeneous and elementary symmetric functions 2022 Florence Maas-Gariépy
Étienne Tétreault
+ Skew characters and cyclic sieving 2020 Per Alexandersson
Stephan Pfannerer
Martin Rubey
Joakim Uhlin
+ The cone of cyclic sieving phenomena 2019 Per Alexandersson
Nima Amini
+ Promotion and Cyclic Sieving on Rectangular $δ$-Semistandard Tableaux 2020 Tair Akhmejanov
Balázs Elek
+ PDF Chat Wronskians, cyclic group actions, and ribbon tableaux 2012 Kevin Purbhoo
+ Promotion and cyclic sieving on families of SSYT 2020 Per Alexandersson
Ezgi Kantarcı Oğuz
Svante Linusson
+ PDF Chat Promotion and cyclic sieving on families of SSYT 2021 Per Alexandersson
Ezgi Kantarcı Oğuz
Svante Linusson
+ PDF Chat Skew characters and cyclic sieving 2021 Per Alexandersson
Stephan Pfannerer
Martin Rubey
Joakim Uhlin
+ Promotion and Cyclic Sieving on Rectangular $\delta$-Semistandard Tableaux 2020 Tair Akhmejanov
Balázs Elek
+ Skew Schur polynomials and cyclic sieving phenomenon 2021 So Yeon Lee
Young-Tak Oh
+ PDF Chat Skew Schur Polynomials and Cyclic Sieving Phenomenon 2022 So Yeon Lee
Young-Tak Oh
+ Promotion and cyclic sieving on families of SSYT. 2020 Per Alexandersson
Ezgi Kantarcı Oğuz
Svante Linusson
+ Plethysms of symmetric functions and highest weight representations 2021 Melanie de Boeck
Rowena Paget
Mark Wildon
+ PDF Chat Generalized Foulkes modules and maximal and minimal constituents of plethysms of Schur functions 2018 Rowena Paget
Mark Wildon
+ Cyclic sieving, promotion, and representation theory 2010 Brendon Rhoades