Unstable equilibria and invariant manifolds in quasi-two-dimensional Kolmogorov-like flow

Type: Article

Publication Date: 2018-08-13

Citations: 16

DOI: https://doi.org/10.1103/physreve.98.023105

Abstract

Recent studies suggest that unstable, nonchaotic solutions of the Navier-Stokes equation may provide deep insights into fluid turbulence. In this article, we present a combined experimental and numerical study exploring the dynamical role of unstable equilibrium solutions and their invariant manifolds in a weakly turbulent, electromagnetically driven, shallow fluid layer. Identifying instants when turbulent evolution slows down, we compute 31 unstable equilibria of a realistic two-dimensional model of the flow. We establish the dynamical relevance of these unstable equilibria by showing that they are closely visited by the turbulent flow. We also establish the dynamical relevance of unstable manifolds by verifying that they are shadowed by turbulent trajectories departing from the neighborhoods of unstable equilibria over large distances in state space.

Locations

Similar Works

Action Title Year Authors
+ PDF Chat Forecasting Fluid Flows Using the Geometry of Turbulence 2017 Balachandra Suri
Jeffrey Tithof
Roman O. Grigoriev
Michael F. Schatz
+ PDF Chat Capturing Turbulent Dynamics and Statistics in Experiments with Unstable Periodic Orbits 2020 Balachandra Suri
Logan Kageorge
Roman O. Grigoriev
Michael F. Schatz
+ Metastability and rapid convergence to quasi-stationary bar states for the 2D Navier-Stokes Equations 2011 Margaret Beck
C. Eugene Wayne
+ PDF Chat Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier–Stokes equations 2013 Margaret Beck
C. Eugene Wayne
+ PDF Chat An adjoint-based approach for finding invariant solutions of Navier–Stokes equations 2016 Mohammad Farazmand
+ PDF Chat Chameleon attractors in a turbulent flow 2021 Tommaso Alberti
F. Daviaud
Reik V. Donner
B. Dubrulle
Davide Faranda
Valerio Lucarini
+ A brief history of simple invariant solutions in turbulence 2018 Lennaert van Veen
+ Exploring regular and turbulent flow states in active nematic channel flow via Exact Coherent Structures and their invariant manifolds 2023 Caleb G. Wagner
Rumayel H. Pallock
Michael M. Norton
Jae Sung Park
Piyush Grover
+ PDF Chat Quasi-two-dimensional Turbulence 2024 Alexandros Alexakis
+ PDF Chat Chameleon attractors in a turbulent flow 2021 Tommaso Alberti
F. Daviaud
Reik V. Donner
B. Dubrulle
Davide Faranda
Valerio Lucarini
+ PDF Chat Stochastic Chaos in a Turbulent Swirling Flow 2017 Davide Faranda
Yuzuru Sato
Brice Saint-Michel
Cécile Wiertel
Vincent Padilla
B. Dubrulle
F. Daviaud
+ PDF Chat Heteroclinic and homoclinic connections in a Kolmogorov-like flow 2019 Balachandra Suri
Ravi Kumar Pallantla
Michael F. Schatz
Roman O. Grigoriev
+ PDF Chat Visualizing the geometry of state space in plane Couette flow 2008 John Gibson
Jonathan Halcrow
Predrag Cvitanović
+ PDF Chat Invariant manifolds and the geometry of front propagation in fluid flows 2012 Kevin Mitchell
John R. Mahoney
+ PDF Chat Chaotic mixing in plane Couette turbulence 2024 John R. Elton
Predrag Cvitanović
Jonathan Halcrow
John Gibson
+ Turbulent Flows 1996 Joel H. Ferziger
Milovan Perić
+ Detecting strange attractors in turbulence 1981 Floris Takens
+ Direct path from turbulence to time-periodic solutions 2023 Chaitanya Paranjape
Gökhan Yalnız
Yohann Duguet
Nazmi Burak Budanur
Björn Hof
+ PDF Chat Subcritical transition to turbulence in quasi-two-dimensional shear flows 2023 Christopher J. Camobreco
Alban Pothérat
Gregory J. Sheard
+ Subcritical transition to turbulence in quasi-two-dimensional shear flows 2021 Christopher J. Camobreco
Alban Pothérat
Gregory J. Sheard

Works That Cite This (12)

Action Title Year Authors
+ PDF Chat Observing a dynamical skeleton of turbulence in Taylor–Couette flow experiments 2023 Christopher Crowley
Joshua L. Pughe-Sanford
Wesley Toler
Roman O. Grigoriev
Michael F. Schatz
+ PDF Chat Heteroclinic and homoclinic connections in a Kolmogorov-like flow 2019 Balachandra Suri
Ravi Kumar Pallantla
Michael F. Schatz
Roman O. Grigoriev
+ PDF Chat Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression 2021 Patrick A. K. Reinbold
Logan Kageorge
Michael F. Schatz
Roman O. Grigoriev
+ PDF Chat Symmetry-reduced dynamic mode decomposition of near-wall turbulence 2022 Elena Marensi
Gökhan Yalnız
Björn Hof
Nazmi Burak Budanur
+ PDF Chat Capturing Turbulent Dynamics and Statistics in Experiments with Unstable Periodic Orbits 2020 Balachandra Suri
Logan Kageorge
Roman O. Grigoriev
Michael F. Schatz
+ PDF Chat Predicting chaotic statistics with unstable invariant tori 2023 Jeremy P. Parker
Omid Ashtari
Tobias M. Schneider
+ PDF Chat Optimal Control of Active Nematics 2020 Michael M. Norton
Piyush Grover
Michael F. Hagan
Seth Fraden
+ Exact Coherent Structures in Fully Developed Two-Dimensional Turbulence 2022 Dmitriy Zhigunov
Roman O. Grigoriev
+ PDF Chat Stably stratified exact coherent structures in shear flow: the effect of Prandtl number 2019 Jake Langham
T. S. Eaves
Rich R. Kerswell
+ Data-driven detection of drifting system parameters. 2021 Logan Kageorge
Roman O. Grigoriev
Michael F. Schatz